deeplearning.ai 神经网络和深度学习 week1 深度学习概论 听课笔记
1. 预测房价、广告点击率:典型的神经网络,standard NN。
图像:卷积神经网络,CNN。
一维序列数据,如音频,翻译:循环神经网络,RNN。
无人驾驶,涉及到图像、雷达等更多的数据类型:混合的神经网络。
2. 结构化数据:数据的数据库,每一种特征都有明确的定义,如预测房价、广告点击率。目前主要的营收来源还是处理结构化数据。
非结构化数据:如音频、图像、文本,特征不明显。人类和你擅长处理非结构化数据。
3. 为什么近期神经网络一下子变这么厉害?一个神经网络牛逼的条件:1)神经网络的规模足够大;2)足够多的数据,这个数据往往要求是带标签的。
对于少量的训练数据,各种算法孰优孰劣不太明显,更依赖人手工设计的特征。
之前神经网络的进步主要依靠1)数据量的增加;2)硬件计算能力的提高。这些年算法方面也有了极大的创新,很多算法的创新点都是加速计算。比如,算法上很大的一个进步是从sigmoid激活函数转换到ReLU函数。sigmoid函数的问题是在左右两个方向都会饱和,梯度很小,导致学习变得非常慢。仅仅把sigmoid换成ReLU,就可以使得梯度下降法运行的快非常多。加快运算的另一个好处是,可以帮助我们更快的实现想法。神经网络的搭建很多时候是很依赖直觉的,所以快速实现想法实验验证,非常重要。
deeplearning.ai 神经网络和深度学习 week1 深度学习概论 听课笔记的更多相关文章
- deeplearning.ai 构建机器学习项目 Week 2 机器学习策略 II 听课笔记
1. 误差分析(Error analysis) 误差分析的目的是找到不同误差源的比重,从而指引我们接下来往哪个方向努力改进.NG建议手工统计随机100个错误的误差源,比如对于猫分类器,错误的照片可能是 ...
- deeplearning.ai 构建机器学习项目 Week 1 机器学习策略 I 听课笔记
这门课是讲一些分析机器学习问题的方法,如何更快速高效的优化机器学习系统,以及NG自己的工程经验和教训. 1. 正交化(Othogonalization) 设计机器学习系统时需要面对一个问题是:可以尝试 ...
- deeplearning.ai 神经网络和深度学习 week1 深度学习概论
1. 预测房价.广告点击率:典型的神经网络,standard NN. 图像:卷积神经网络,CNN. 一维序列数据,如音频,翻译:循环神经网络,RNN. 无人驾驶,涉及到图像.雷达等更多的数据类型:混合 ...
- deeplearning.ai 神经网络和深度学习 week4 深层神经网络 听课笔记
1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第 ...
- deeplearning.ai 神经网络和深度学习 week4 深层神经网络
1. 计算深度神经网络的时候,尽量向量化数据,不要用for循环.唯一用for循环的地方是依次在每一层做计算. 2. 最常用的检查代码是否有错的方法是检查算法中矩阵的维度. 正向传播: 对于单个样本,第 ...
- deeplearning.ai 神经网络和深度学习 week3 浅层神经网络 听课笔记
1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第 ...
- deeplearning.ai 神经网络和深度学习 week2 神经网络基础 听课笔记
1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...
- deeplearning.ai 神经网络和深度学习 week3 浅层神经网络
1. 第i层网络 Z[i] = W[i]A[i-1] + B[i],A[i] = f[i](Z[i]). 其中, W[i]形状是n[i]*n[i-1],n[i]是第i层神经元的数量: A[i-1]是第 ...
- deeplearning.ai 神经网络和深度学习 week2 神经网络基础
1. Logistic回归是用于二分分类的算法. 对于m个样本的训练集,我们可能会习惯于使用for循环一个个处理,但在机器学习中,是把每一个样本写成一个列向量x,然后把m个列向量拼成一个矩阵X.这个矩 ...
随机推荐
- 回顾2017系列篇(一):最佳的11篇UI/UX设计文章
2017已经接近尾声,在这一年中,设计领域发生了诸多变化.也是时候对2017年做一个总结,本文主要是从2017设计文章入手,列出了个人认为2017设计行业里最重要的UI/UX文章的前11名,供大家参考 ...
- JPA实体类注解、springboot测试类、lombok的使用
前提准备: 搭建一个springboot项目,详情请参见其它博客:点击前往 1 引入相关依赖 web.mysql.jpa.lombok <?xml version="1.0" ...
- 如何在yarn上运行Hello World(二)
在之前的一篇文章我们介绍了如何编写在yarn集群提交运行应用的AM的yarnClient端,现在我们来继续介绍如何编写在yarn集群控制应用app运行的核心模块 ApplicationMaster ...
- 记vue API 知识点
1. v-cloak指令:这个指令保持在元素上直到关联实例结束编译.和 CSS 规则如 [v-cloak] { display: none } 一起用时,这个指令可以隐藏未编译的 Mustache 标 ...
- Netty-Websocket 根据URL路由,分发机制的实现
最近在做netty整合websocket,发现网上很多项目都是最简单的demo,单例的一个项目. 然而公司的项目需要接受几个不同功能的ws协议消息,因此最好是用URL来区分,让页面上采用不同的链接方式 ...
- java.util.HashSet
Operations Time Complexity Notes add, remove, contains, size O(1) assuming the hash functions has di ...
- Golang 网络爬虫框架gocolly/colly 三
Golang 网络爬虫框架gocolly/colly 三 熟悉了<Golang 网络爬虫框架gocolly/colly一>和<Golang 网络爬虫框架gocolly/colly二& ...
- Effective Java 第三版——15. 使类和成员的可访问性最小化
Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...
- 《深入理解java虚拟机》 - 需要一本书来融汇贯通你的经验(下)
上一章讲到了类的加载机制,主要有传统派的 双亲委派模型 和 现代主义激进派的 osgi 类加载器.接下来继续. 第8章 虚拟机字节码执行引擎 局部变量表,用于存储方法参数和方法内部定义的局部变量. 操 ...
- python2中的__init__.py文件的作用
python2中的__init__.py文件的作用: 1.python的每个模块的包中,都必须有一个__init__.py文件,有了这个文件,我们才能导入这个目录下的module. 2.__init_ ...