The leaflet package for online mapping in R(转)
It has been possible for some years to launch a web map from within R. A number of packages for doing this are available, including:
- RgoogleMaps, an interface to the Google Maps api
- leafletR, an early package for creating Leaflet maps with R
- rCharts, which can be used as a basis for webmaps
In this tutorial we use the new RStudio-supported leaflet R package. We use this package, an R interface to theJavaScript mapping library of the same name because:
- leaflet is supported by RStudio, who have a track strong track record of creating amazing R packages
- leaflet appears to provide the simplest, fastest way to host interactive maps online in R, requiring only 2 lines of code for one web map! (as you’ll see below)
- leaflet is shiny. Shiny in the literal sense of the word (a new and fresh approach to web mapping in R) but also in the sense that it works well with the R package shiny.
The best tutorial resource I have found on leaflet is this vignette by Joe Cheng and Yihui Xie. Building on their excellent description, this article explains some of the fundamentals of the package.
Installing leaflet
Because leaflet is new, it’s not yet on CRAN. Even when it does appear, installing from github may be a good idea, to ensure you have access to the latest features and bug fixes. Here’s how:
# Install leaflet package
if(!require(leaflet)) install_github("rstudio/leaflet")
A first web map with leaflet
To create an interactive web map with leaflet is incredibly easy. Having installed the package try this single line of code:
# Plot a default web map (brackets display the result)
(m <- leaflet() %>% addTiles())
img <- readPNG("~/repos/Creating-maps-in-R/figure//shiny_world.png")
grid.raster(img)

Adding basic features with %>%
Adding basic features to your webmap is easy. The %>% ‘pipe’ operator used extensively in dplyr and developed for the maggrittr package means we can finally escape from dozens of nested bracketted commands. (If you use RStudio, I suggest trying the new shortcut Ctl+Shift+M to produce this wonderful operator.) leaflet settings and functionality can thus be added sequentially, without requiring any additional brackets!
To add a location to the map m, for example, we can simply pipe m into the function setView():
m %>% setView(lng = -1.5, lat = 53.4, zoom = 10) # set centre and extent of map
This way we can gradually add elements to our map, one-by-one:
(m2 <- m %>%
setView(-1.5, 53.4, 10) %>% # map location
addMarkers(-1.4, 53.5) %>% # add a marker
addPopups(-1.6, 53.3, popup = "Hello Sheffield!") %>% # popup
# add som circles:
addCircles(color = "black", runif(90, -2, -1), runif(90, 53, 54), runif(90, 10, 500)))

Adding data
In the previous example, we added some random data that we created locally, inside the function call. How do we use real, large datasets in leaflet? The package provides 3 options:
- Data from base R: lat/long matrix or data.frame
- Data from sp such as SpatialPoints and SpatialPolygons
- Data from maps
Let’s try adding a bicycle route, one that I followed with some friends to move from Sheffield to my current home of Leeds. First download some data:
url = "https://github.com/Robinlovelace/sdvwR/raw/master/data/gps-trace.gpx"
download.file(url, destfile = "shef2leeds.gpx", method = "wget")
Now we can load this as a SpatialLinesDataFrame and display in leaflet:
library(rgdal)
shef2leeds <- readOGR("shef2leeds.gpx", layer = "tracks")
m2 %>%
setView(-1.5, 53.4, 9) %>% # map location
addPolylines(data = shef2leeds, color = "red", weight = 4)

Note in the above example that we had to use the argument data = to refer to our spatial object: it cannot simply be inserted without specifying what it is. The data argument can also be placed inside the initialleaflet() function call.
That was quite a painless process that would many more lines of code if you were to use JavaScript. But not as painless as the bicycle trip itself, which involved fewer lines of code still: 0! This can be seen in the following video.
Shiny integration
leaflet is developed by the same team who develop shiny so the two are well integrated. Below is a very simple example, modified slightly from the package’s vignette:
library(shiny)
shinyApp(
ui = fluidPage(leafletOutput('myMap')),
server = function(input, output) { # download and load data
url = "https://github.com/Robinlovelace/sdvwR/raw/master/data/gps-trace.gpx"
download.file(url, destfile = "shef2leeds.gpx", method = "wget", )
library(rgdal)
shef2leeds <- readOGR("shef2leeds.gpx", layer = "tracks") map = leaflet() %>% addTiles() %>% setView(-1.5, 53.4, 9) %>%
addPolylines(data = shef2leeds, color = "red", weight = 4)
output$myMap = renderLeaflet(map)
}
)
Applications
Clearly leaflet is a powerful and flexible R package. If I were to offer one critique, it would be that I could find no easy way to allow the user to query the data objects loaded. plotly, for example, provides a description of any visual object the user clicks on. The datashine commuter visualisation, for example allows users to click on any point, resulting in a burst of lines emenating from it. This would also be possible in leaflet/shiny, but the best implementation is not immediately clear, to me at least!
The wider context of this article is the pressing need for better transport planning decision making, to enable a transition away from fossil fuels. To this end, the ‘propensity to cycle’ project, funded by the UK’sDepartment for Transport, seeks to create an interactive tool to identify where new bicycle paths are most needed. There are clearly many other uses for R’s leaflet package: what will you use it for? Let me know at@robinlovelace.
转自:http://robinlovelace.net/r/2015/02/01/leaflet-r-package.html
The leaflet package for online mapping in R(转)的更多相关文章
- 解决Package is not available (for R version XXX)?
目录 1. 更新R(不推荐) 2. 更改或指定镜像源 3.源码安装 安装R包时这个错误是经常见到的.我认为有几个方法可解决,记录之. 1. 更新R(不推荐) 简单粗暴的方法就是更新R,但这波及的范围太 ...
- R扩展包
log10() .libPaths()#查看R包目录 library()#查看以前安装的函数 search() #安装R包的方式 install.packages("car")#安 ...
- 轻松创建R语言函数包
讲真,用R这么几年,始终未尝试过写自己的包,看来这就是我与真正程序员的差距了——编程习惯等于没有. 昨天一个偶然的机会想开始写自己的工具包,发现了前期教程的有一些过时.于是,写一个**windows* ...
- R语言 recommenderlab 包
recommend li_volleyball 2016年3月20日 library(recommenderlab) ## Warning: package 'recommenderlab' was ...
- R语言-神经网络包RSNNS
code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...
- arcpy.mapping常用四大件-StyleItem
arcpy.mapping常用四大件-StyleItem by 李远祥 StyleItem 笔者将其归类到arcpy.mapping的四大件当中,主要是因为它的独特之处,就是其能力是直接读取.styl ...
- arcpy.mapping实战-专题图制图自动化
arcpy.mapping实战-专题图制图自动化 by 李远祥 最初对arcpy.mapping感兴趣是因为一次大规模的专题地图调整的需要,由于某某单位利用ArcEngine编写的专题图出图系统,出现 ...
- arcpy.mapping常用四大件-MapsurroundElement
arcpy.mapping常用四大件-MapsurroundElement by 李远祥 在arcpy.mapping 中,除了数据入口MapDocument.图层Layer之外,另一重要的角色就是M ...
- arcpy.mapping常用四大件-MapDocument
arcpy.mapping常用四大件-MapDocument by 李远祥 点开arcpy.mapping的帮助,可以看到其有限的几个类,看起来东西不是很多,但却是非常的使用.由于arcpy定位就是粗 ...
随机推荐
- getline函数(精华版)
在我的印象中,getline函数经常出现在自己的视野里,模糊地记得它经常用来读取字符串 .但是又对它的参数不是很了解,今天又用到了getline函数,现在来细细地总结一下: 首先要明白设计ge ...
- SQL编程的一些良好好习惯
|转载自:cnblog |原文链接:http://www.cnblogs.com/MR_ke/archive/2011/05/29/2062085.html 我们做软件开发的,大部分人都离不开跟数据库 ...
- Sitemesh 3 配置和使用(最新)
Sitemesh 3 配置和使用(最新) 一 Sitemesh简介 Sitemesh是一个页面装饰器,可以快速的创建有统一外观Web应用 -- 导航 加 布局 的统一方案~ Sitemesh可以拦截任 ...
- 回到顶端的jquery
现在的淘宝啊,京东啊,各种网站都有一个功能,有一个按钮,在页面最顶端的时候不会显示,当往下拉到一定的时候会出现.点击他会直接跳到页面的顶端.代码如下: html代码: <div id=" ...
- 初识ElasticSearch
概述 Elasticsearch是一个基于Apache Lucene(TM)的开源搜索引擎.无论在开源还是专有领域,Lucene可以被认为是迄今为止最先进.性能最好的.功能最全的搜索引擎库. 分布式的 ...
- php object 对象系统
php object 对象系统 概述 本节内容仅谈论对象系统内容, 对于相关内容并不做更深一步的扩展, 相关扩展的内容会在后续补充 object 对象属于 zval 结构的一种形式 php 将所有执行 ...
- 用eclipes 添加jboss tools中的hibernate tool进行反向工程生成数据库对应的BOJO(Javabean)
用eclipes 添加jboss tools中的hibernate tool进行反向工程生成数据库对应的BOJO(Javabean) 安装: 在help中eclise marksplace中查询JBo ...
- iOS 播放GIf图, 动态效果
一.如果你集成了SDWebImage , 有一个很简单的方法 //导入sdwebImage的某个头文件 #import "UIImage+GIF.h" _bubble1.backg ...
- 现有‘abcdefghijkl’12个字符,将其所有的排列按字典序进行排序,给出任意一组排列,说出这租排列在所有排列中是第几小的
题目: 现有‘abcdefghijkl’12个字符,将其所有的排列按字典序进行排序,给出任意一组排列,说出这租排列在所有排列中是第几小的 据说这道题是百度校招的一道算法题,反正我觉得我在学校的时候很可 ...
- 【NIO】Java NIO之选择器
一.前言 前面已经学习了缓冲和通道,接着学习选择器. 二.选择器 2.1 选择器基础 选择器管理一个被注册的通道集合的信息和它们的就绪状态,通道和选择器一起被注册,并且选择器可更新通道的就绪状态,也可 ...