It has been possible for some years to launch a web map from within R. A number of packages for doing this are available, including:

  • RgoogleMaps, an interface to the Google Maps api
  • leafletR, an early package for creating Leaflet maps with R
  • rCharts, which can be used as a basis for webmaps

In this tutorial we use the new RStudio-supported leaflet R package. We use this package, an R interface to theJavaScript mapping library of the same name because:

  • leaflet is supported by RStudio, who have a track strong track record of creating amazing R packages
  • leaflet appears to provide the simplest, fastest way to host interactive maps online in R, requiring only 2 lines of code for one web map! (as you’ll see below)
  • leaflet is shiny. Shiny in the literal sense of the word (a new and fresh approach to web mapping in R) but also in the sense that it works well with the R package shiny.

The best tutorial resource I have found on leaflet is this vignette by Joe Cheng and Yihui Xie. Building on their excellent description, this article explains some of the fundamentals of the package.

Installing leaflet

Because leaflet is new, it’s not yet on CRAN. Even when it does appear, installing from github may be a good idea, to ensure you have access to the latest features and bug fixes. Here’s how:

# Install leaflet package
if(!require(leaflet)) install_github("rstudio/leaflet")

A first web map with leaflet

To create an interactive web map with leaflet is incredibly easy. Having installed the package try this single line of code:

# Plot a default web map (brackets display the result)
(m <- leaflet() %>% addTiles())
img <- readPNG("~/repos/Creating-maps-in-R/figure//shiny_world.png")
grid.raster(img)

Adding basic features with %>%

Adding basic features to your webmap is easy. The %>% ‘pipe’ operator used extensively in dplyr and developed for the maggrittr package means we can finally escape from dozens of nested bracketted commands. (If you use RStudio, I suggest trying the new shortcut Ctl+Shift+M to produce this wonderful operator.) leaflet settings and functionality can thus be added sequentially, without requiring any additional brackets!

To add a location to the map m, for example, we can simply pipe m into the function setView():

m %>% setView(lng = -1.5, lat = 53.4, zoom = 10) # set centre and extent of map

This way we can gradually add elements to our map, one-by-one:

(m2 <- m %>%
setView(-1.5, 53.4, 10) %>% # map location
addMarkers(-1.4, 53.5) %>% # add a marker
addPopups(-1.6, 53.3, popup = "Hello Sheffield!") %>% # popup
# add som circles:
addCircles(color = "black", runif(90, -2, -1), runif(90, 53, 54), runif(90, 10, 500)))

Adding data

In the previous example, we added some random data that we created locally, inside the function call. How do we use real, large datasets in leaflet? The package provides 3 options:

  • Data from base R: lat/long matrix or data.frame
  • Data from sp such as SpatialPoints and SpatialPolygons
  • Data from maps

Let’s try adding a bicycle route, one that I followed with some friends to move from Sheffield to my current home of Leeds. First download some data:

url = "https://github.com/Robinlovelace/sdvwR/raw/master/data/gps-trace.gpx"
download.file(url, destfile = "shef2leeds.gpx", method = "wget")

Now we can load this as a SpatialLinesDataFrame and display in leaflet:

library(rgdal)
shef2leeds <- readOGR("shef2leeds.gpx", layer = "tracks")
m2 %>%
setView(-1.5, 53.4, 9) %>% # map location
addPolylines(data = shef2leeds, color = "red", weight = 4)

Note in the above example that we had to use the argument data = to refer to our spatial object: it cannot simply be inserted without specifying what it is. The data argument can also be placed inside the initialleaflet() function call.

That was quite a painless process that would many more lines of code if you were to use JavaScript. But not as painless as the bicycle trip itself, which involved fewer lines of code still: 0! This can be seen in the following video.

Shiny integration

leaflet is developed by the same team who develop shiny so the two are well integrated. Below is a very simple example, modified slightly from the package’s vignette:

library(shiny)
shinyApp(
ui = fluidPage(leafletOutput('myMap')),
server = function(input, output) { # download and load data
url = "https://github.com/Robinlovelace/sdvwR/raw/master/data/gps-trace.gpx"
download.file(url, destfile = "shef2leeds.gpx", method = "wget", )
library(rgdal)
shef2leeds <- readOGR("shef2leeds.gpx", layer = "tracks") map = leaflet() %>% addTiles() %>% setView(-1.5, 53.4, 9) %>%
addPolylines(data = shef2leeds, color = "red", weight = 4)
output$myMap = renderLeaflet(map)
}
)

Applications

Clearly leaflet is a powerful and flexible R package. If I were to offer one critique, it would be that I could find no easy way to allow the user to query the data objects loaded. plotly, for example, provides a description of any visual object the user clicks on. The datashine commuter visualisation, for example allows users to click on any point, resulting in a burst of lines emenating from it. This would also be possible in leaflet/shiny, but the best implementation is not immediately clear, to me at least!

The wider context of this article is the pressing need for better transport planning decision making, to enable a transition away from fossil fuels. To this end, the ‘propensity to cycle’ project, funded by the UK’sDepartment for Transport, seeks to create an interactive tool to identify where new bicycle paths are most needed. There are clearly many other uses for R’s leaflet package: what will you use it for? Let me know at@robinlovelace.

转自:http://robinlovelace.net/r/2015/02/01/leaflet-r-package.html

The leaflet package for online mapping in R(转)的更多相关文章

  1. 解决Package is not available (for R version XXX)?

    目录 1. 更新R(不推荐) 2. 更改或指定镜像源 3.源码安装 安装R包时这个错误是经常见到的.我认为有几个方法可解决,记录之. 1. 更新R(不推荐) 简单粗暴的方法就是更新R,但这波及的范围太 ...

  2. R扩展包

    log10() .libPaths()#查看R包目录 library()#查看以前安装的函数 search() #安装R包的方式 install.packages("car")#安 ...

  3. 轻松创建R语言函数包

    讲真,用R这么几年,始终未尝试过写自己的包,看来这就是我与真正程序员的差距了——编程习惯等于没有. 昨天一个偶然的机会想开始写自己的工具包,发现了前期教程的有一些过时.于是,写一个**windows* ...

  4. R语言 recommenderlab 包

    recommend li_volleyball 2016年3月20日 library(recommenderlab) ## Warning: package 'recommenderlab' was ...

  5. R语言-神经网络包RSNNS

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

  6. arcpy.mapping常用四大件-StyleItem

    arcpy.mapping常用四大件-StyleItem by 李远祥 StyleItem 笔者将其归类到arcpy.mapping的四大件当中,主要是因为它的独特之处,就是其能力是直接读取.styl ...

  7. arcpy.mapping实战-专题图制图自动化

    arcpy.mapping实战-专题图制图自动化 by 李远祥 最初对arcpy.mapping感兴趣是因为一次大规模的专题地图调整的需要,由于某某单位利用ArcEngine编写的专题图出图系统,出现 ...

  8. arcpy.mapping常用四大件-MapsurroundElement

    arcpy.mapping常用四大件-MapsurroundElement by 李远祥 在arcpy.mapping 中,除了数据入口MapDocument.图层Layer之外,另一重要的角色就是M ...

  9. arcpy.mapping常用四大件-MapDocument

    arcpy.mapping常用四大件-MapDocument by 李远祥 点开arcpy.mapping的帮助,可以看到其有限的几个类,看起来东西不是很多,但却是非常的使用.由于arcpy定位就是粗 ...

随机推荐

  1. C#图解教程-方法参数笔记(上)

    一晃大学四年要过去了,期间乱点了很多技能点, 导致每一项技能都只是处于入门阶段.为了将C#作为我的主要技能,准备恶补相关姿势(知识),通过各种技术论坛的推荐,找到了<C#图解教程>这本书. ...

  2. 2017年4月 TIOBE 编程语言排名

    2017年4月 TIOBE 编程语言排名 Hack是Facebook 在三年推出的PHP方言,在2017年4月首次进入TIOBE编程语言排行榜前50位. Hack原是Facebook的内部项目,与20 ...

  3. 浩哥解析MyBatis源码(十二)——binding绑定模块之MapperRegisty

    原创作品,可以转载,但是请标注出处地址:http://www.cnblogs.com/V1haoge/p/6758456.html 1.回顾 之前解析了解析模块parsing,其实所谓的解析模块就是为 ...

  4. Linux系统OOM killer机制详解

    介绍: Linux下面有个特性叫OOM killer(Out Of Memory killer),会在系统内存耗尽的情况下出现,选择性的干掉一些进程以求释放一些内存.广大从事Linux方面的IT农民工 ...

  5. 使用canvas进行图片裁剪简单功能

    1.html部分 使用一个input[type="file"]进行图片上传: canvas进行图片的裁剪展示 <div> <input type="fi ...

  6. openlayers3应用一:显示百度地图

    在项目中使用百度地图,最直接的方式是使用百度api,但是使用百度api需要申请key,并且某些功能调用有次数限制. 本文讲述在openlayers3中使用百度地图的方法.调用百度地图,也是经过了几番周 ...

  7. java web 简单的登录注册

    --sql文件 create database studentgouse studentgocreate table stuinfo(--stuid int primary key identity( ...

  8. 跟着刚哥学习Spring框架--创建HelloWorld项目(一)

    1.Spring框架简介 Spring是一个开源框架,Spring是在2003年兴起的一个轻量级的开源框架,由Rod johnson创建.主要对JavaBean的生命周期进行管理的轻量级框架,Spri ...

  9. O(nlogn)实现LCS与LIS

    序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...

  10. Hashtable、ConcurrentHashMap源码分析

    Hashtable.ConcurrentHashMap源码分析 为什么把这两个数据结构对比分析呢,相信大家都明白.首先二者都是线程安全的,但是二者保证线程安全的方式却是不同的.废话不多说了,从源码的角 ...