bzoj 4653: [Noi2016]区间
Description
Input
Output
Sample Input
3 5
1 2
3 4
2 2
1 5
1 4
Sample Output
HINT
Source
这道题和极差最小生成树有点像,就是枚举一个区间作为长度最短的区间,求得满足覆盖>=m次的最大的区间的长度最小;
暴力的做法是把长度sort一边,从前往后枚举最小边,对于每一个枚举的最小长度区间,一直往后加,直到覆盖m次后break;
至于如何判断是否覆盖了>=m次,这就是线段树区间加法了;
然后我们发现左端点是单调的,因为是在同样有点满足覆盖>=m次的条件下,后面的肯定比前面优,所以就可用单调队列扫一遍即可
坐标离散化一下。。。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ls (x<<1)
#define rs (x<<1|1)
using namespace std;
const int N=1000000;
const int Inf=2147483647;
struct data{
int l,r,len;
}q[N];
int tr[N*4],lazy[N*4],hsh[N],num[N],tot,n,m;
bool cmp(const data &a,const data &b){
return a.len<b.len;
}
void pushdown(int x){
tr[ls]+=lazy[x],tr[rs]+=lazy[x];
lazy[ls]+=lazy[x];lazy[rs]+=lazy[x];lazy[x]=0;
}
void pushup(int x){
tr[x]=max(tr[ls],tr[rs]);
}
void update(int x,int l,int r,int xl,int xr,int v){
if(xl<=l&&r<=xr){
lazy[x]+=v;tr[x]+=v;return;
}
if(lazy[x]) pushdown(x);
int mid=(l+r)>>1;
if(xr<=mid) update(ls,l,mid,xl,xr,v);
else if(xl>mid) update(rs,mid+1,r,xl,xr,v);
else update(ls,l,mid,xl,mid,v),update(rs,mid+1,r,mid+1,xr,v);
pushup(x);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d%d",&q[i].l,&q[i].r);
hsh[++tot]=q[i].l;hsh[++tot]=q[i].r;
}
sort(hsh+1,hsh+tot+1),tot=unique(hsh+1,hsh+tot+1)-hsh-1;
for(int i=1;i<=n;i++){
q[i].l=lower_bound(hsh+1,hsh+1+tot,q[i].l)-hsh;
q[i].r=lower_bound(hsh+1,hsh+1+tot,q[i].r)-hsh;
q[i].len=hsh[q[i].r]-hsh[q[i].l];
}
int head=1,ans=Inf;sort(q+1,q+1+n,cmp);
for(int i=1;i<=n;i++){
update(1,1,tot,q[i].l,q[i].r,1);
while(tr[1]>=m){
ans=min(q[i].len-q[head].len,ans);
update(1,1,tot,q[head].l,q[head].r,-1);
head++;
}
}
if(ans==Inf) puts("-1");
else printf("%d\n",ans);
}
bzoj 4653: [Noi2016]区间的更多相关文章
- BZOJ 4653 [Noi2016]区间(Two pointers+线段树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4653 [题目大意] 在数轴上有n个闭区间 [l1,r1],[l2,r2],...,[l ...
- BZOJ.4653.[NOI2016]区间(线段树)
BZOJ4653 UOJ222 考虑二分.那么我们可以按区间长度从小到大枚举每个区间,对每个区间可以得到一个可用区间长度范围. 我们要求是否存在一个点被这些区间覆盖至少\(m\)次.这可以用线段树区间 ...
- 洛谷 1712 BZOJ 4653 [NOI2016]区间
[题解] 先把区间按照未离散化的长度排序,保存区间长度,然后离散化区间端点.每次把区间覆盖的点的覆盖次数加1,如果某个点被覆盖次数大于等于m,就从前往后开始删除区间直到没有一个点被覆盖的次数大于等于m ...
- BZOJ 4653: [Noi2016]区间 双指针 + 线段树
只要一堆线段有重叠次数大于等于 $m$ 次的位置,那么一定有解 因为重叠 $m$ 次只需 $m$ 个线断,将那些多余的线断排除掉即可 先将区间按照长度从小到大排序,再用 $two-pointer$ 从 ...
- [Noi2016]区间[离散化+线段树维护+决策单调性]
4653: [Noi2016]区间 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 621 Solved: 329[Submit][Status][D ...
- [BZOJ4653][NOI2016]区间 贪心+线段树
4653: [Noi2016]区间 Time Limit: 60 Sec Memory Limit: 256 MB Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],. ...
- [NOI2016]区间 题解(决策单调性+线段树优化)
4653: [Noi2016]区间 Time Limit: 60 Sec Memory Limit: 256 MBSubmit: 1593 Solved: 869[Submit][Status][ ...
- BZOJ4653 [NOI2016]区间 [线段树,离散化]
题目传送门 区间 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间,使得这 m个区间共同包含至少一个位置.换句话说,就 ...
- BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针
BZOJ_4653_[Noi2016]区间_线段树+离散化+双指针 Description 在数轴上有 n个闭区间 [l1,r1],[l2,r2],...,[ln,rn].现在要从中选出 m 个区间, ...
随机推荐
- Python简单爬虫
爬虫简介 自动抓取互联网信息的程序 从一个词条的URL访问到所有相关词条的URL,并提取出有价值的数据 价值:互联网的数据为我所用 简单爬虫架构 实现爬虫,需要从以下几个方面考虑 爬虫调度端:启动爬虫 ...
- layer,Jquery,validate实现表单验证,刷新页面,关闭子页面
1.表单验证 //获取父层 var index = parent.layer.getFrameIndex(window.name); //刷新父层 parent.location.reload(); ...
- mysql 索引类型
根据类型分为普通索引2种类型,hash 和b-tree 最常用 hash是按一对一索引的.速度 最快但不支持范围 比如where name = 'dd' 最快.但是使用 date >3 ...
- mysql建表测试
drop table if exists news; --如果存在表则删除create table news --创建表( id int unsigned not null auto_ ...
- TempFile模块
tempfile模块,用来对临时数据进行操作 tempfile 临时文件(夹)操作 tempfile.mkstemp([suffix="[, prefix='tmp'[, dir=None[ ...
- 让你的Javascript提升70%性能
现在的JavaScript代码要进行性能优化,通常使用一些常规手段,如:延迟执行.预处理.setTimeout等异步方式避免处理主线程,高大上一点的会使用WebWorker.即使对于WebWorker ...
- IEEE Trans 2008 Gradient Pursuits论文学习
之前所学习的论文中求解稀疏解的时候一般采用的都是最小二乘方法进行计算,为了降低计算复杂度和减少内存,这篇论文梯度追踪,属于贪婪算法中一种.主要为三种:梯度(gradient).共轭梯度(conjuga ...
- poj 2159 D - Ancient Cipher 文件加密
Ancient Cipher Description Ancient Roman empire had a strong government system with various departme ...
- Android设计模式(九)--外观模式
问题:在Android中,Apk能够有微信,QQ为代表的插件式安装更新功能: 那么问题来了,主系统(姑且这么说)调用插件式安装的子系统.由子系统提供对外的訪问.属不属于一种外观模式呢? 先说设计模式: ...
- 掌上快递 APP 项目之概述篇
概述 学习Android开发也有一段时间了,利用业余时间独立制作的一款快递类APP软件.大概2个多星期吧,自己将其定位为"集快递信息追踪.附近快递点查询. 快递公司投诉功能为一体的便民生活类 ...