STM32基础分析——USART的DMA模式
有关USART的DMA传输模式,其基本的概念和配置,网上有很多博客和教程都有,这里不再赘述,只是记录一下比较容易忽视而造成调试不通的问题。
1. 串口发送和接收分属两个DMA通道
一般方式操作串口时,读写数据都是只操作DR(数据寄存器),虽然它是由两个寄存器组成的,一个给发送用(TDR),一个给接收用(RDR),但是用户只能操作DR寄存。而DMA模式下,串口发送和接收分属两个DMA通道,需要单独配置。

分别配置的代码如下:
static void USART1_Tx_DMA_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel4_IRQn; // 配置DMA1_Channel4中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
DMA_DeInit(USART_TX_DMA_CHANNEL);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // 开启DMA时钟
DMA_InitStructure.DMA_PeripheralBaseAddr = USART_DR_ADDRESS; // 设置DMA源地址:串口数据寄存器地址
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)sendbuff; // 内存地址(要传输的变量的指针)
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; // 方向:从内存到外设
DMA_InitStructure.DMA_BufferSize = CMD_NUM; // 传输大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // 内存地址自增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 外设数据单位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; // 内存数据单位
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; // DMA一次模式
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; // 优先级:中
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; // 禁止内存到内存的传输
DMA_Init(USART_TX_DMA_CHANNEL, &DMA_InitStructure); // 配置DMA通道DMA1_Channel4
DMA_ITConfig(USART_TX_DMA_CHANNEL,DMA_IT_TC,ENABLE);
DMA_Cmd (USART_TX_DMA_CHANNEL,DISABLE); // 关闭DMA
}
static void USART1_Rx_DMA_Config(void)
{
DMA_InitTypeDef DMA_InitStructure;
//注意,接收没使用接收DMA中断
// NVIC_InitTypeDef NVIC_InitStructure;
//
// NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel5_IRQn;
// NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
// NVIC_InitStructure.NVIC_IRQChannelSubPriority = 4;
// NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
// NVIC_Init(&NVIC_InitStructure);
DMA_DeInit(USART_RX_DMA_CHANNEL);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); // 开启DMA时钟
DMA_InitStructure.DMA_PeripheralBaseAddr = USART_DR_ADDRESS; // 设置DMA源地址:串口数据寄存器地址*/
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)rx_cmd; // 内存地址(要传输的变量的指针)
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; // 方向:外设到内存
DMA_InitStructure.DMA_BufferSize = CMD_NUM; // 传输大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; // 外设地址不增
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; // 内存地址自增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; // 外设数据单位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; // 内存数据单位
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; // DMA一次模式
DMA_InitStructure.DMA_Priority = DMA_Priority_Medium; // 优先级:中
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; // 禁止内存到内存的传输
DMA_Init(USART_RX_DMA_CHANNEL, &DMA_InitStructure); // 配置DMA通道DMA1_Channel5
// DMA_ITConfig(USART_RX_DMA_CHANNEL,DMA_IT_TC,ENABLE);
DMA_Cmd (USART_RX_DMA_CHANNEL,ENABLE); // 使能DMA
}
注意:在串口的基本配置当中要打开DMA传输模式,函数如下:
USART_DMACmd(USART1,USART_DMAReq_Tx,ENABLE); // 开启串口发送DMA
USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE); // 开启串口接收DMA
2. 间隔单次传输
将DMA传输模式设置为Normal(一次传输),传输完成需要再次传输时,需要再次向DMA通道的传输数量寄存器(CNDTR)写入要传输的字节数。但是,在写入前,需要关闭DMA,写完CNDTR后再打开。
2.1 串口DMA发送
我的设计方法是在初始化的时候,默认先关闭发送DMA,在需要串口发送数据时,先配置CNDTR,再打开DMA,发送完成后进入中断函数,再关闭DMA。
void DMA1_Channel4_IRQHandler(void)
{
DMA_ClearFlag(DMA1_FLAG_TC4);
DMA_Cmd(USART_TX_DMA_CHANNEL,DISABLE);
}
*********
//代码片段
DMA_SetCurrDataCounter(DMA1_Channel4,(uint16_t)CMD_NUM); // 关于DMA单次传输,这条非常重要
DMA_Cmd (USART_TX_DMA_CHANNEL,ENABLE);
2.2 串口DMA接收
设计方法是:不启用DMA接收通道中断,而使用串口传输中断,在串口中断函数中对DMA处理。注意,一般串口中断我们采用的是接收中断USART_IT_RXNE,接收一次即中断一次。在DMA模式下要使用空闲中断USART_IT_IDLE,空闲中断是在检测到接收数据后,在数据总线上的一个字节时间内,如果没有接收到新的数据,则触发空闲中断,它是在串口的RXNE位被置位之后才开始检测。简单理解是,连续的一串数据发送完成之后,才触发空闲中断。
串口的CR1寄存器的IDLE位被硬件置1,必须采用软件将IDLE位清零才能避免反复进入空闲中断。具体的做法是先读取状态寄存器USART_SR,再读取数据寄存器USART_DR,完成后自动清除。需要注意的是,不能采用库函数USART_ClearFlag()或者USART_ClearItPending()来清除IDEL标志,因为这两个函数接收的中断标志位仅包括:
USART_FLAG_CTS: CTS Change flag (not available for UART4 and UART5).
USART_FLAG_LBD: LIN Break detection flag.
USART_FLAG_TC: Transmission Complete flag.
USART_FLAG_RXNE: Receive data register not empty flag.
同理,关闭DMA后,重置传输字节数,再开启DMA(因为串口一直要监测接收数据)。串口中断函数基础代码如下:
void USART1_IRQHandler(void)
{
uint32_t temp = 0;
if(USART_GetITStatus(USART1,USART_IT_IDLE)!=RESET)
{
// temp = USART_GetITStatus(USART1,USART_IT_IDLE); // 在判断时已经读取过一次
temp = USART_ReceiveData(USART1); // 必须添加这条语句
DMA_Cmd(USART_RX_DMA_CHANNEL,DISABLE);
DMA_SetCurrDataCounter(DMA1_Channel5,(uint16_t)CMD_NUM);
DMA_Cmd(USART_RX_DMA_CHANNEL,ENABLE);
}
}
3. 疑问
实际上这里面还有一些隐含方式方法,感兴趣的可以尝试一下,欢迎分享。
- 现在采用的是串口中断来处理接收问题,是否可以采用DMA接收中断来处理数据接收?就如同DMA发送中断来处理发送数据一样。
4. 参考文献
- 《STM32F10X参考手册》
- 《32位基于ARM微控制器STM32F101xx与STM32F103xx 固件函数库》
- STM32的串口空闲中断
- STM32的串口采用DMA方式接收数据测试
- STM32使用串口IDLE中断的两种接收不定长数据的方式
STM32基础分析——USART的DMA模式的更多相关文章
- STM32 ADC多通道转换DMA模式与非DMA模式两种方法(HAL库)
一.非DMA模式(转) 说明:这个是自己刚做的时候百度出来的,不是我自己做出来的,因为感觉有用就保存下来做学习用,原文链接:https://blog.csdn.net/qq_24815615/arti ...
- 使用STM32的USART的同步模式Synchronous调戏SPI【usart模拟spi理论】
[原创出品§转载请注明出处] 出处:http://www.cnblogs.com/libra13179/p/7064321.html 什么东西?? 我们先来看我们平常看到SPI的时序图(呵呵,要是忘记 ...
- 使用STM32的USART的同步模式Synchronous调戏SPI[2] 【实现spi 9bit】
[原创出品§转载请注明出处] 出处:http://www.cnblogs.com/libra13179/p/7064533.html 上回说道使用USART的来模拟SPI通讯.说说一下我什么写这个的原 ...
- STM32的USART DMA传输(转)
源:STM32的USART DMA传输 问题描述: 我有一个需求,AD采得一定数目的数据之后,由串口DMA发出,由于AD使用双缓冲,所以每次开始DMA的时候都需要重新设置开始的内存地址以及传输的数目( ...
- (三)stm32之串口通信DMA传输完成中断
一.DMA功能简介 首先唠叨一下DMA的基本概念,DMA的出现大大减轻了CPU的工作量.在硬件系统中,主要由CPU(内核).外设.内存(SRAM).总线等结构组成,数据经常要在内存和外设之间,外设和外 ...
- stm32串口USART 硬件流控 --学习笔记
流控的概念源于 RS232 这个标准,在 RS232 标准里面包含了串口.流控的定义.大家一定了解,RS232 中的"RS"是Recommend Standard 的缩写,即&qu ...
- STM32(11)——DMA
简介: DMA:Direct Memory Access,直接存储器访问.DMA传输数据从一个地址空间复制到另外一个地址空间.当CPU初始化这个传输动作,传输动作本身就是DMA控制器来实现和完成.典型 ...
- stm32定时器时钟以及中间对齐模式
在永磁同步电机的控制中,需要对电机的三相定子施加一定的电压,才能控制电机转动.现在用的较多的是SVPWM(SVPWM的具体原理会在后面另写一篇博客说明),要想产生SVPWM波形,需要控制的三相电压呈如 ...
- STM32串行通信USART解说笔记
STM32串行通信USART程序例举链接:http://blog.csdn.net/dragon12345666/article/details/24883111 1.STM32串行通信USART的相 ...
随机推荐
- ViewPager +无限轮播+滑动速度修改+指示小点
养成习惯,做过代码记录总结. ViewPager 使用记录 1. ViewPage 位于V4包. 2.主要用来做banner轮播. 3.原理:适配器重用提高效率,与listview等一个原理. 下面记 ...
- 机器学习实验一SVM分类实验
一.实验目的和内容 (一)实验目的 1.熟悉支持向量机SVM(Support Vector Machine)模型分类算法的使用. 2.用svm-train中提供的代码框架(填入SVM分类器代码)用tr ...
- C语言之随机数
#include<stdio.h>#include<stdlib.h>#include<time.h>int main(){ srand(time(0)); int ...
- java 之 建造者模式(大话设计模式)
建造者模式,在笔者看来比较试用于,定制一个业务流程,而流程的细节又不尽相同,每个细节又必不可少,这时应考虑使用建造者模式. 大话设计模式-类图 先看下笔者写的一个简单的例子. /** * 所有建造过程 ...
- MFC中小笔记
主要记录下一些有啊没啊的MFC东西. 1.单文档 去掉 无标题:在玩的时候用于FindWindow(class,title) BOOL CMainFrame::PreCreateWindow(CREA ...
- django框架中的中间件
什么是中间件 中间件就是在url进入路由之前进行检测的一个类 也就是说,每一个请求都是先通过中间件中的 process_request 函数,这个函数返回 None 或者 HttpResponse 对 ...
- python并发编程之多进程二
一,multiprocessing模块介绍 python中的多线程无法利用多核优势,如果想要充分地使用多核CPU的资源(os.cpu_count()查看),在python中大部分情况需要使用多进程.P ...
- 51Nod--1008
1008 N的阶乘 mod P 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 % ...
- 一个PHP高性能、多并发、restful的工具库(基于multi_curl)
This is high performance curl wrapper written in pure PHP. It's compatible with PHP 5.4+ and HHVM. N ...
- linux禁用锁定和解除解锁用户账号的方法
Linux系统使用的是/etc/shadow保存加密了的用户密码,要禁止一个帐号的话,最快的方法就是修改存储于/etc/shadow中的密码. 一般情况下,一个有效的Linux用户在/etc/shad ...