1. 导入各种包

from mxnet import gluon
from mxnet.gluon import nn
import matplotlib.pyplot as plt
from mxnet import autograd as autograd
from mxnet import nd
import mxnet as mx
from collections import namedtuple
import random

2. 准备数据

使用和mnist很像的FashionMNIST数据集,使用Gluon下载

def transform(data,label):
return data.astype('float32')/255,label.astype('float32')
fashion_train = gluon.data.vision.FashionMNIST(root='./',train=True,transform=transform)
fashion_test = gluon.data.vision.FashionMNIST(root='./',train=True, transform=transform)
batch_size = 256
train_data = gluon.data.DataLoader(fashion_train,batch_size,shuffle=True)
test_data = gluon.data.DataLoader(fashion_test,batch_size,shuffle=True)

用于显示图像和标签

def show_images(images):
n = images.shape[0]
_, figs = plt.subplots(1, n, figsize=(15, 15))
for i in range(n):
figs[i].imshow(images[i].reshape((28, 28)).asnumpy())
figs[i].axes.get_xaxis().set_visible(False)
figs[i].axes.get_yaxis().set_visible(False)
plt.show()
def get_text_labels(label):
text_labels = [
't-shirt', 'trouser', 'pullover', 'dress,', 'coat',
'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot'
]
return [text_labels[int(i)] for i in label]

看下数据集长啥样

data,label = fashion_train[5:19]
show_images(data)
print(get_text_labels(label))

['coat', 'coat', 'sandal', 'coat', 'bag', 't-shirt', 'bag', 'ankle boot', 't-shirt', 'pullover', 'pullover', 'ankle boot', 'dress,', 'dress,']

3. 精度计算函数

def accuracy(output, label):
return nd.mean(output.argmax(axis=1)==label).asscalar() def evaluate_accuracy(data_iterator, net):
acc = 0.
for data, label in data_iterator:
output = net(nd.transpose(data,(0,3,1,2)))
acc += accuracy(output, label)
return acc / len(data_iterator)

4. 定义网络

4.1 自己定义的层

Gluon模型转到Symbol下只能用HybridSequential模式,HybridSequential是静态图,会对计算有优化,不过HybridSequentialSequential可以很方便的转换,确切的就是一行代码的事。同样自定义的网络,要使用HybridBlock,和Block没有多大区别

class MyDense(nn.HybridBlock):
def __init__(self,**kwargs):
super(MyDense,self).__init__(**kwargs)
with self.name_scope():
self.dense0 = nn.Dense(256)
self.dense1 = nn.Dense(10)
def hybrid_forward(self,F,x): # 这里要使用hybrid_forward而不是forward,并且多了个参数F
return self.dense1(F.relu(self.dense0(x))) # F的作用就是替代 nd,如果是静态图,就是用 sym,否则使用 nd

4.2 使用自定义的层和自带的层组成完整的网络

网络定义和动态图一样,只不过把Sequential替换成了HybridSequential,在最后使用hybridize()会对静态图进行优化

net = nn.HybridSequential()
with net.name_scope():
net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(gluon.nn.Conv2D(channels=50, kernel_size=3, activation='relu'))
net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
net.add(gluon.nn.Flatten())
net.add(MyDense())
net.initialize(init=mx.init.Xavier())
net.hybridize()
net
HybridSequential(
(0): Conv2D(20, kernel_size=(5, 5), stride=(1, 1))
(1): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(2): Conv2D(50, kernel_size=(3, 3), stride=(1, 1))
(3): MaxPool2D(size=(2, 2), stride=(2, 2), padding=(0, 0), ceil_mode=False)
(4): Flatten
(5): MyDense(
(dense0): Dense(256, linear)
(dense1): Dense(10, linear)
)
)

5. 训练

使用Adam优化算法,训练的速度会快点

softmax_cross_entropy = gluon.loss.SoftmaxCrossEntropyLoss()
trainer = gluon.Trainer(net.collect_params(), 'Adam', {'learning_rate': 0.008})
for epoch in range(5):
train_loss = 0.
train_acc = 0.
test_acc = 0.
for data, label in train_data:
data = nd.transpose(data,(0,3,1,2))
with autograd.record():
output = net(data)
loss = softmax_cross_entropy(output, label)
loss.backward()
trainer.step(batch_size) train_loss += nd.mean(loss).asscalar()
train_acc += accuracy(output, label) test_acc = evaluate_accuracy(test_data, net)
print("Epoch %d. Loss: %f, Train acc %f, Test acc %f" % (
epoch, train_loss/len(train_data), train_acc/len(train_data), test_acc))
Epoch 0. Loss: 0.498041, Train acc 0.817226, Test acc 0.865459
Epoch 1. Loss: 0.312128, Train acc 0.884813, Test acc 0.894265
Epoch 2. Loss: 0.274009, Train acc 0.898454, Test acc 0.898604
Epoch 3. Loss: 0.247741, Train acc 0.906521, Test acc 0.914910
Epoch 4. Loss: 0.226967, Train acc 0.913736, Test acc 0.914334

6. 保存成Symbol格式的网络和参数(重点)

要注意保存网络参数的时候,需要net.collect_params().save()这样保存,而不是net.save_params()保存

最新版的mxnet已经有可以导出到symbol格式下的接口了。需要mxnet版本在20171015以上

下面示例代码也已经改成新版的保存,加载方式

#新版本的保存方式
net.export('Gluon_FashionMNIST')

7. 使用Symbol加载网络并绑定

symnet = mx.symbol.load('Gluon_FashionMNIST-symbol.json')
mod = mx.mod.Module(symbol=symnet, context=mx.cpu())
mod.bind(data_shapes=[('data', (1, 1, 28, 28))])
mod.load_params('Gluon_FashionMNIST-0000.params')
Batch = namedtuple('Batch', ['data'])

8. 预测试试看效果

img,label = fashion_test[random.randint(0, 60000)]
data = img.transpose([2,0,1])
data = data.reshape([1,1,28,28])
mod.forward(Batch([data]))
out = mod.get_outputs()
prob = out[0]
predicted_labels = prob.argmax(axis=1) plt.imshow(img.reshape((28, 28)).asnumpy())
plt.axis('off')
plt.show()
print('predicted labels:',get_text_labels(predicted_labels.asnumpy())) print('true labels:',get_text_labels([label]))

predicted labels: ['pullover']
true labels: ['pullover']

MxNet新前端Gluon模型转换到Symbol的更多相关文章

  1. 使用MxNet新接口Gluon提供的预训练模型进行微调

    1. 导入各种包 from mxnet import gluon import mxnet as mx from mxnet.gluon import nn from mxnet import nda ...

  2. 前端MVVM框架avalon - 模型转换1

    轻量级前端MVVM框架avalon - 模型转换(一) 接上一章 ViewModel modelFactory工厂是如何加工用户定义的VM? 附源码 洋洋洒洒100多行内部是魔幻般的实现 1: fun ...

  3. 轻量级前端MVVM框架avalon - 模型转换

    接上一章 ViewModel modelFactory工厂是如何加工用户定义的VM? 附源码 洋洋洒洒100多行内部是魔幻般的实现 1: function modelFactory(scope) { ...

  4. 混合前端seq2seq模型部署

    混合前端seq2seq模型部署 本文介绍,如何将seq2seq模型转换为PyTorch可用的前端混合Torch脚本.要转换的模型来自于聊天机器人教程Chatbot tutorial. 1.混合前端 在 ...

  5. 【模型推理】Tengine 模型转换及量化

      欢迎关注我的公众号 [极智视界],回复001获取Google编程规范   O_o   >_<   o_O   O_o   ~_~   o_O   本文介绍一下 Tengine 模型转换 ...

  6. 将List 中的ConvertAll的使用:List 中的元素转换,List模型转换, list模型转数组

    一,直接入代码 using System; using System.Collections.Generic; using System.Linq; using System.Web; using S ...

  7. Blazor——Asp.net core的新前端框架

    原文:Blazor--Asp.net core的新前端框架 Blazor是微软在Asp.net core 3.0中推出的一个前端MVVM模型,它可以利用Razor页面引擎和C#作为脚本语言来构建WEB ...

  8. 看JQ时代过来的前端,如何转换思路用Vue打造选项卡组件

    前言 在Vue还未流行的时候,我们都是用JQuery来封装一个选项卡插件,如今Vue当道,让我们一起来看看从JQ时代过来的前端是如何转换思路,用数据驱动DOM的思想打造一个Vue选项卡组件. 接下来, ...

  9. tensorflow,object,detection,在model zoom,新下载的模型,WARNING:root:Variable [resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma] is not available in checkpoint

    现象: WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta] is not ava ...

随机推荐

  1. webservice Dome--一个webservice的简单小实例

    1.理解:webservice就是为了实现不同服务器上不同应用程序的之间的通讯 2.让我们一步一步的来做一个webservice的简单应用 1)新建一个空的web应用程序,在程序上右键,新建项目,选择 ...

  2. MPLS LDP随堂笔记1

    LDP 的使用原因(对于不同协议来说) LDP的四大功能 发现邻居 hello 5s 15s 224.0.0.2 发现邻居关系 R1 UDP 646端口 R2 UDP 646端口 此时形成邻居 建立邻 ...

  3. Assert中的静态方法

    junit中的assert方法全部放在Assert类中,总结一下junit类中assert方法的分类. 1.assertTrue/False([String message,]boolean cond ...

  4. K好数--蓝桥杯

    JAVA版K好数--蓝桥杯 历经千辛万苦,也算是研究出来了这道题了. 这道题主要运用了动态规划(Dynamic Planning)的思想,何谓动态规划?其实就是将一个大问题分成一个个小问题,然后先通过 ...

  5. Eclipse安装完findbugs插件后,SVN插件不可用有关问题解决

    Eclipse安装完findbugs插件后,SVN插件不可用问题解决: 安装findbugs插件后,SVN插件就消失了.后来从网上查到解决方案:eclipse/configuration目录下的org ...

  6. 201521123114 《Java程序设计》第4周学习总结

    1. 本章学习总结 1.1 尝试使用思维导图总结有关继承的知识点. 1.2 使用常规方法总结其他上课内容. 学会了设计一个类时,尽量用private修饰属性,public修饰方法:类名的首字母要大写. ...

  7. 201521123112《Java程序设计》第10周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结异常与多线程相关内容. 2. 书面作业 本次PTA作业题集异常.多线程 1.finally 题目4-2 1.1 截图你的提交结果(出 ...

  8. 201521123024 《java程序设计》 第12周学习总结

    1. 本周学习总结 1.1 以你喜欢的方式(思维导图或其他)归纳总结多流与文件相关内容.

  9. es6中对象的类与继承方法

    对于对象,我一直搞不清楚到底是该如何去继承,如何去书写.在熟练es6之后,终于会尝试写出来了. 代码如下: //我们假定父类为person,子类为man class person{ construct ...

  10. Java实现MD5加密_字符串加密_文件加密

    Java实现MD5加密,具体代码如下: package com.bstek.tools; import java.io.FileInputStream; import java.io.IOExcept ...