【bzoj1047】理想的正方形

题意

给定\(a*b\)由整数组成的矩形。

现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值

的差最小。

\(1\leq a,b\leq 1000\)

\(1\leq n\leq 100\)

分析

枚举每一个位置,然后考虑快速求矩形内的最大值和最小值即可。

单调队列可以快速实现:

先求出\(d[i][j]\)表示\(a[i][j-n+1,j-n,...,j]\)中的最值。

然后求出\(f[i][j]\)表示\(d[i-n+1,i-n,...,i][j]\)中的最值。

所有的\(f[i][j]\)就表示以\((i,j)\)为右下角端点的矩形的最值。

也可以使用ST表。

由于\(n\)一定,所以只需要用一个简化的二维ST表即可。

\(f[i][j][k]\)表示跨度为\(2^i\),终点在\((j,k)\)的矩形的最值。

注意ST表的正确姿势。

对于二维ST表,记\(f[i][j][k][l]\),其中两个跨度放前面。

不然调试起来会很麻烦的。

代码

#include <cstdio>
#include <cctype>
#include <cmath>
#include <climits>
#include <algorithm>
using namespace std;

#define rep(i,a,b) for (int i=(a);i<=(b);i++)

const int N=1001;
const int U=10;

const int MAX=INT_MAX>>1;
const int MIN=INT_MIN>>1;

int n,m,siz;
int a[N][N];

int un,um; int unit;
int maxV[U][N][N],minV[U][N][N];
int res;

int rd(void) {
    int x=0,f=1; char c=getchar();
    for (;!isdigit(c);c=getchar()) if (c=='-') f=-1;
    for (;isdigit(c);c=getchar()) x=x*10+c-'0';
    return x*f;
}

int Query(int x,int y) {
    int tx=(x-siz+1)+(1<<unit)-1;
    int ty=(y-siz+1)+(1<<unit)-1;

    int mx=MIN;
    mx=max(mx,maxV[unit][x][y]);
    mx=max(mx,maxV[unit][x][ty]);
    mx=max(mx,maxV[unit][tx][y]);
    mx=max(mx,maxV[unit][tx][ty]);

    int mn=MAX;
    mn=min(mn,minV[unit][x][y]);
    mn=min(mn,minV[unit][x][ty]);
    mn=min(mn,minV[unit][tx][y]);
    mn=min(mn,minV[unit][tx][ty]);

    return mx-mn;
}

int main(void) {
    #ifndef ONLINE_JUDGE
    freopen("bzoj1047.in","r",stdin);
    freopen("bzoj1047.out","w",stdout);
    #endif

    n=rd(),m=rd(),siz=rd();
    rep(i,1,n) rep(j,1,m)
        a[i][j]=rd();

    unit=(int)(log(siz)/log(2));
    rep(i,0,unit) rep(j,1,n) rep(k,1,m) {
        minV[i][j][k]=MAX;
        maxV[i][j][k]=MIN;
    }
    rep(j,1,n) rep(k,1,m) {
        minV[0][j][k]=a[j][k];
        maxV[0][j][k]=a[j][k];
    }
    rep(i,1,unit) rep(j,1,n) rep(k,1,m) {
        int tj=max(1,j-(1<<(i-1)));
        int tk=max(1,k-(1<<(i-1)));

        int *now=&(minV[i][j][k]);
        *now=min(*now,minV[i-1][j][k]);
        *now=min(*now,minV[i-1][j][tk]);
        *now=min(*now,minV[i-1][tj][k]);
        *now=min(*now,minV[i-1][tj][tk]);

        now=&(maxV[i][j][k]);
        *now=max(*now,maxV[i-1][j][k]);
        *now=max(*now,maxV[i-1][j][tk]);
        *now=max(*now,maxV[i-1][tj][k]);
        *now=max(*now,maxV[i-1][tj][tk]);
    }

    res=MAX;
    rep(i,siz,n) rep(j,siz,m) {
        int t=Query(i,j);
        res=min(res,t);
    }
    printf("%d\n",res);

    return 0;
}

【bzoj1047】理想的正方形的更多相关文章

  1. bzoj1047理想的正方形

    题目链接 纪念又双叒叕的一道暴力碾标算的题 我们考虑纯暴力 #include<iostream> #include<cstdio> #include<algorithm& ...

  2. bzoj1047 理想的正方形

    Description 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. Input 第一行为3个整数,分别表示a,b,n的值第二行至第 ...

  3. 【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)

    [BZOJ1047][HAOI2007]理想的正方形(单调队列,动态规划) 题面 BZOJ 洛谷 题解 直接一个单调队列维护一下没给点和它前面的\(n\)个位置的最大值,再用一次单调队列维护连续\(n ...

  4. 【BZOJ1047】[HAOI2007]理想的正方形

    [BZOJ1047][HAOI2007]理想的正方形 题面 bzoj 洛谷 题解 二维\(st\)表,代码是以前的 #include<iostream> #include<cstdi ...

  5. [bzoj1047][HAOI2007]理想的正方形_动态规划_单调队列

    理想的正方形 bzoj-1047 HAOI-2007 题目大意:有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 注释:$2\le a, ...

  6. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  7. bzoj千题计划215:bzoj1047: [HAOI2007]理想的正方形

    http://www.lydsy.com/JudgeOnline/problem.php?id=1047 先用单调队列求出每横着n个最大值 再在里面用单调队列求出每竖着n个的最大值 这样一个位置就代表 ...

  8. 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)

    [HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...

  9. HAOI2007 理想的正方形

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1402  Solved: 738[Submit][Sta ...

随机推荐

  1. FileInputstream的available()方法

    摘自:http://greemranqq.iteye.com/blog/2051487

  2. 重大发现: windows下C++ UI库 UI神器-SOUI(转载)

    转载:http://www.cnblogs.com/setoutsoft/p/4996870.html 在Windows平台上开发客户端产品是一个非常痛苦的过程,特别是还要用C++的时候.尽管很多语言 ...

  3. Struts2的标签库(三)——控制标签

    Struts2的标签库(三) --控制标签 1.if/elseif/else标签 用于分支控制,取代JSP中的if语句,根据一个boolean(test属性的值)值判断是否进行下一步运算或者输出等. ...

  4. Margin and Padding in Windows Forms Controls

    https://msdn.microsoft.com/en-us/library/ms229627.aspx Margin and Padding Precise placement of contr ...

  5. vim使用札记

    最近开始用vim编辑器了,从最开始的配置到现在慢慢使用,我在这儿会贴出一些我的使用上遇到过的问题和如何解决的方案,留给自己和一些会用到的人看看 1.vim怎么使汇编语法高亮 开始不知道,然后把文件的后 ...

  6. PostgresSql开放局域网访问

    1) 确认已经退掉所有的MASF终端和MSF GUI,然后打开PostgresSQL的启动文件在文件POSTGRESQL_START参数后面添加-h 0.0.0.0,让PostgreSQL启动时绑定到 ...

  7. POJ 2376 Cleaning Shifts(轮班打扫)

    POJ 2376 Cleaning Shifts(轮班打扫) Time Limit: 1000MS   Memory Limit: 65536K [Description] [题目描述] Farmer ...

  8. Spark运行在eclipse_使用PyDev和pyspark

    一直想在eclipse上编写Spark程序,但是仿佛是因为spark的安装包提供了PS D:\software\spark-1.6.1-bin-hadoop2.6> .\bin\spark-su ...

  9. 这只是一篇用Markdown写的随记,就是熟悉熟悉MarkDown而已

    这几天的随想 今天是八月十一号了,来到公司实习已经第八天了,包块周末的话就是十二天了,我在这十二天里干了什么,转眼半个月就过去了 马上就要开学了,这个暑假干了些什么,单词单词也没背多少,之前七月回家有 ...

  10. yum安装指定版本软件包__20160308

    举例子: 安装 libGL-devel 1. yum list libGL-devel 居然说没有匹配的包的信息... [root@CentOS6 ~]# yum list libGL-devel L ...