复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答
七、(本题10分)设 \(A\) 为数域 \(K\) 上的 \(n\) 阶非异阵, 证明: 对任意的对角阵 \(B\in M_n(K)\), \(A^{-1}BA\) 均为对角阵的充分必要条件是 \(A=P_1P_2\cdots P_r\), 其中 \(P_i\) 均为第一类初等阵 (即对换 \(I_n\) 的某两行) 或第二类初等阵 (即非零常数乘以 \(I_n\) 的某一行).
证明 充分性通过简单验证即可证明. 现证必要性, 设 \(A=(a_{ij})_{n\times n}\), 取 \(B=\mathrm{diag}\{1,2,\cdots,n\}\), 设 \(A^{-1}BA=C=\mathrm{diag}\{d_1,d_2,\cdots,d_n\}\). 由 \(BA=AC\) 知对任意的 \(i,j\) 成立: \[ia_{ij}=d_ja_{ij}.\]
因为 \(A\) 的每个列向量均非零, 故对任意的 \(1\leq j\leq n\), 存在某个行指标 \(i_j\) 使得 \(a_{i_j j}\neq 0\). 由上述条件可得 \[d_j=i_j,\,\,\forall\,1\leq j\leq n.\]
再次带入上述条件可得\[a_{ij}=0,\,\,\forall\,i\neq i_j,\,1\leq j\leq n.\]
由 \(A\) 的非异性知 \(A\) 的列向量线性无关, 从而 \(i_1,i_2,\cdots,i_n\) 是 \(1,2,\cdots,n\) 的全排列, 故通过若干次行对换可将 \(A\) 变为对角阵且主对角线上元素非零; 再通过若干次第二类初等行变换可将矩阵变为单位阵 \(I_n\), 故 \(A\) 是第一类初等阵和第二类初等阵的乘积. \(\Box\)
复旦大学2013--2014学年第一学期(13级)高等代数I期末考试第七大题解答的更多相关文章
- 复旦大学2018--2019学年第一学期(18级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $V$ 为 $n$ 维线性空间, $\varphi,\psi$ 是 $V$ 上的线性变换, 满足 $\varphi\psi=\varphi$. 证明: $\mathrm{Ke ...
- 复旦大学2016--2017学年第一学期(16级)高等代数I期末考试第七大题解答
七.(本题10分) 设 $A,B$ 均为 $m\times n$ 阶实矩阵, 满足 $A'B+B'A=0$. 证明: $$r(A+B)\geq\max\{r(A),r(B)\},$$并且等号成立的充 ...
- 复旦大学2014--2015学年第一学期(14级)高等代数I期末考试第七大题解答
七.(本题10分) 设 \(V\) 为数域 \(\mathbb{K}\) 上的 \(n\) 维线性空间, \(S=\{v_1,v_2,\cdots,v_m\}\) 为 \(V\) 中的向量组, 定义 ...
- 复旦大学2014--2015学年第二学期(14级)高等代数II期末考试第八大题解答
八.(本题10分) 设 $A,B$ 为 $n$ 阶半正定实对称阵, 求证: $AB$ 可对角化. 分析 证明分成两个步骤: 第一步, 将 $A,B$ 中的某一个简化为合同标准形来考虑问题, 这是矩 ...
- 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...
- 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答
八.(本题10分) 设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...
- 复旦大学2017--2018学年第一学期(17级)高等代数I期末考试第六大题解答
六.(本题10分) 设 $M_n(K)$ 为数域 $K$ 上的 $n$ 阶方阵全体构成的线性空间, $A,B\in M_n(K)$, $M_n(K)$ 上的线性变换 $\varphi$ 定义为 $\ ...
- 复旦大学2016--2017学年第二学期(16级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶半正定实对称阵, $S$ 为 $n$ 阶实反对称阵, 满足 $AS+SA=0$. 证明: $|A+S|>0$ 的充要条件是 $r(A)+r(S)= ...
- 复旦大学2017--2018学年第二学期(17级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $A$ 为 $n$ 阶幂零阵 (即存在正整数 $k$, 使得 $A^k=0$), 证明: $e^A$ 与 $I_n+A$ 相似. 证明 由 $A$ 是幂零阵可知, $A$ ...
随机推荐
- 互联网分享知识(一转载 http://www.cnblogs.com/baochuan/p/4636103.html)
风雪之隅-Laruence的博客 http://www.laruence.com/ PHP开发组成员, Zend兼职顾问, PHP7核心开发者, Yaf, Yar, Yac等项目作者.偏向P ...
- html 输入框验证
JS判断只能是数字和小数点 1.文本框只能输入数字代码(小数点也不能输入)<input onkeyup="this.value=this.value.replace(/\D/g,'') ...
- 衣明志是个SB
面试碰到衣明志,问了些傻逼问题,尼玛就是一不折不扣的蠢驴. 这个人太能装了,而且水平也不咋地.
- hibernate笔记01
- Oracle DB SQL 性能分析器
• 确定使用SQL 性能分析器的优点 • 描述SQL 性能分析器工作流阶段 • 使用SQL 性能分析器确定数据库更改所带来的性能改进 SQL 性能分析器:概览 • 11g 的新增功能 • 目标用户:D ...
- shell 在文件名后面添加特定数据
for a in `ls mo-*`;do mv ${a%:} ${a%:}-1;done
- ftp 终端命令
近期使用 macbook,并与新买的路由器折腾, 先备着... http://blog.csdn.net/qinde025/article/details/7595102 ftp使用的内部命令如下(其 ...
- 使用Application Loader打包上传AppStore流程
配置完你的证书,Bundle Identifier 和描述文件的配置 然后配置工程打开你项目工程 第一步,这里不能选择模拟器,选择iOS Device 如果不支持横屏,把这2个勾去掉 然后查看版本号和 ...
- iOS 学习笔记 七 (2015.03.29)code snippet操作
1.code snippet 备份路径:~/Library/Developer/Xcode/UserData/CodeSnippets/
- Access数据库导入到SQL Server 2005 Express中
安装好SQL Server 2005 Express后,再安装SQL Server Management Studio Express CTP就可以很方便的使用控制台进行数据库的管理.但SQL Ser ...