题目连接

http://acm.hdu.edu.cn/showproblem.php?pid=1212

Big Number

Description

As we know, Big Number is always troublesome. But it's really important in our ACM. And today, your task is to write a program to calculate A mod B.

To make the problem easier, I promise that B will be smaller than 100000.

Is it too hard? No, I work it out in 10 minutes, and my program contains less than 25 lines.

Input

The input contains several test cases. Each test case consists of two positive integers A and B. The length of A will not exceed 1000, and B will be smaller than 100000. Process to the end of file.

Output

For each test case, you have to ouput the result of A mod B.

SampleInput

2 3
12 7
152455856554521 3250

SampleOutput

2
5
1521

大数取余模板题。。

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<cstdio>
#include<vector>
#include<string>
#include<map>
#include<set>
using std::cin;
using std::max;
using std::cout;
using std::endl;
using std::string;
using std::istream;
using std::ostream;
#define sz(c) (int)(c).size()
#define all(c) (c).begin(), (c).end()
#define iter(c) decltype((c).begin())
#define cls(arr,val) memset(arr,val,sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for (int i = 0; i < (int)(n); i++)
#define fork(i, k, n) for (int i = (int)k; i <= (int)n; i++)
#define tr(c, i) for (iter(c) i = (c).begin(); i != (c).end(); ++i)
#define pb(e) push_back(e)
#define mp(a, b) make_pair(a, b)
struct BigN {
typedef unsigned long long ull;
static const int Max_N = ;
int len, data[Max_N];
BigN() { memset(data, , sizeof(data)), len = ; }
BigN(const int num) {
memset(data, , sizeof(data));
*this = num;
}
BigN(const char *num) {
memset(data, , sizeof(data));
*this = num;
}
void clear() { len = , memset(data, , sizeof(data)); }
BigN& clean(){ while (len > && !data[len - ]) len--; return *this; }
string str() const {
string res = "";
for (int i = len - ; ~i; i--) res += (char)(data[i] + '');
if (res == "") res = "";
res.reserve();
return res;
}
BigN operator = (const int num) {
int j = , i = num;
do data[j++] = i % ; while (i /= );
len = j;
return *this;
}
BigN operator = (const char *num) {
len = strlen(num);
for (int i = ; i < len; i++) data[i] = num[len - i - ] - '';
return *this;
}
BigN operator + (const BigN &x) const {
BigN res;
int n = max(len, x.len) + ;
for (int i = , g = ; i < n; i++) {
int c = data[i] + x.data[i] + g;
res.data[res.len++] = c % ;
g = c / ;
}
return res.clean();
}
BigN operator * (const BigN &x) const {
BigN res;
int n = x.len;
res.len = n + len;
for (int i = ; i < len; i++) {
for (int j = , g = ; j < n; j++) {
res.data[i + j] += data[i] * x.data[j];
}
}
for (int i = ; i < res.len - ; i++) {
res.data[i + ] += res.data[i] / ;
res.data[i] %= ;
}
return res.clean();
}
BigN operator * (const int num) const {
BigN res;
res.len = len + ;
for (int i = , g = ; i < len; i++) res.data[i] *= num;
for (int i = ; i < res.len - ; i++) {
res.data[i + ] += res.data[i] / ;
res.data[i] %= ;
}
return res.clean();
}
BigN operator - (const BigN &x) const {
assert(x <= *this);
BigN res;
for (int i = , g = ; i < len; i++) {
int c = data[i] - g;
if (i < x.len) c -= x.data[i];
if (c >= ) g = ;
else g = , c += ;
res.data[res.len++] = c;
}
return res.clean();
}
BigN operator / (const BigN &x) const {
BigN res, f = ;
for (int i = len - ; ~i; i--) {
f *= ;
f.data[] = data[i];
while (f >= x) {
f -= x;
res.data[i]++;
}
}
res.len = len;
return res.clean();
}
BigN operator % (const BigN &x) {
BigN res = *this / x;
res = *this - res * x;
return res;
}
BigN operator += (const BigN &x) { return *this = *this + x; }
BigN operator *= (const BigN &x) { return *this = *this * x; }
BigN operator -= (const BigN &x) { return *this = *this - x; }
BigN operator /= (const BigN &x) { return *this = *this / x; }
BigN operator %= (const BigN &x) { return *this = *this % x; }
bool operator < (const BigN &x) const {
if (len != x.len) return len < x.len;
for (int i = len - ; ~i; i--) {
if (data[i] != x.data[i]) return data[i] < x.data[i];
}
return false;
}
bool operator >(const BigN &x) const { return x < *this; }
bool operator<=(const BigN &x) const { return !(x < *this); }
bool operator>=(const BigN &x) const { return !(*this < x); }
bool operator!=(const BigN &x) const { return x < *this || *this < x; }
bool operator==(const BigN &x) const { return !(x < *this) && !(x > *this); }
friend istream& operator >> (istream &in, BigN &x) {
string src;
in >> src;
x = src.c_str();
return in;
}
friend ostream& operator << (ostream &out, const BigN &x) {
out << x.str();
return out;
}
}A[];
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
std::ios::sync_with_stdio(false);
while (cin >> A[] >> A[]) {
cout << A[] % A[] << endl;
rep(i, ) A[i].clear();
}
return ;
}

hdu 1212 Big Number的更多相关文章

  1. HDU 1212 Big Number(C++ 大数取模)(java 大数类运用)

    Big Number 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1212 ——每天在线,欢迎留言谈论. 题目大意: 给你两个数 n1,n2.其中n1 ...

  2. HDU 1212 Big Number 大数模小数

    http://acm.hdu.edu.cn/showproblem.php?pid=1212 题目大意: 给你一个长度不超过1000的大数A,还有一个不超过100000的B,让你快速求A % B. 什 ...

  3. hdu 1212 Big Number(大数取模)

    Problem Description As we know, Big Number is always troublesome. But it's really important in our A ...

  4. 题解报告:hdu 1212 Big Number(大数取模+同余定理)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1212 Problem Description As we know, Big Number is al ...

  5. hdu 5898 odd-even number 数位DP

    传送门:hdu 5898 odd-even number 思路:数位DP,套着数位DP的模板搞一发就可以了不过要注意前导0的处理,dp[pos][pre][status][ze] pos:当前处理的位 ...

  6. hdu 2665 Kth number

    划分树 /* HDU 2665 Kth number 划分树 */ #include<stdio.h> #include<iostream> #include<strin ...

  7. hdu 4670 Cube number on a tree(点分治)

    Cube number on a tree Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/ ...

  8. 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )

    在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...

  9. HDU - 1711 A - Number Sequence(kmp

    HDU - 1711 A - Number Sequence   Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1 ...

随机推荐

  1. 华为OJ平台——完美数

    import java.util.Scanner; /** * * 完全数(Perfect number),又称完美数或完备数,是一些特殊的自然数. * 它所有的真因子(即除了自身以外的约数)的和(即 ...

  2. 前端神器 Firebug 2.0 新特性一览

    如果你从事Web前端方面的开发工作,那么对Firebug一定不会陌生,这是Firefox浏览器的一款插件,集HTML查看和编辑.Javascript控制台.网络状况监视器于一体,给Web开发者带来了极 ...

  3. Leetcode049. Group Anagrams

    //hashmap implement with STL class Solution { public: vector<vector<string>> groupAnagra ...

  4. 实现MySQL的Replication

    实现MySQL的Replication     实现MySQL的Replication在MySQL 3.23.15版本之后,MySQL提供了数据库复制的功能,可以实现两个数据库实时同步,增强了MySQ ...

  5. Windows USN Journal Parsing

    What is "USN Journal"? It is "Update Sequence Number Journal". It records change ...

  6. leetcode 100

    100. Same Tree Given two binary trees, write a function to check if they are equal or not. Two binar ...

  7. RequireJS示例

    建议项目结构: HTML文件结构: <!DOCTYPE html> <html> <head lang="en"> <meta chars ...

  8. 通过Migration在EF6中用多个DbContext

    通过Migration在EF6中用多个DbContext EF EF6 C# Migration 通过Migration在EF6中用多个DbContext 前言 实现目标 设置多数据上下文 更新数据脚 ...

  9. OpenStack实战(一)

    OpenStack作为当前发展势头迅猛的云计算开源项目,去年进行了一些了解,现在有空回来进行一些补充记录,当时实战的版本是那会最新版本,当然现在已经更新了好几版了,不过还是那句话“这些丝毫不影响,了解 ...

  10. input文本框实现宽度自适应代码实例,input文本框

    本章节介绍一下如何让一个文本框的宽度能够随着文本框中的内容的宽度增长而增长,也就是能够实现宽度自适应效果. 代码实例如下: <!DOCTYPE html> <html> < ...