poj 1679 The Unique MST
题目连接
http://poj.org/problem?id=1679
The Unique MST
Description
Given a connected undirected graph, tell if its minimum spanning tree is unique.
Definition 1 (Spanning Tree): Consider a connected, undirected graph G = (V, E). A spanning tree of G is a subgraph of G, say T = (V', E'), with the following properties:
1. V' = V.
2. T is connected and acyclic.
Definition 2 (Minimum Spanning Tree): Consider an edge-weighted, connected, undirected graph G = (V, E). The minimum spanning tree T = (V, E') of G is the spanning tree that has the smallest total cost. The total cost of T means the sum of the weights on all the edges in E'.
Input
The first line contains a single integer t (1 <= t <= 20), the number of test cases. Each case represents a graph. It begins with a line containing two integers n and m (1 <= n <= 100), the number of nodes and edges. Each of the following m lines contains a triple (xi, yi, wi), indicating that xi and yi are connected by an edge with weight = wi. For any two nodes, there is at most one edge connecting them.
Output
For each input, if the MST is unique, print the total cost of it, or otherwise print the string 'Not Unique!'.
Sample Input
1
6 7
1 3 1
1 2 2
2 3 3
3 4 0
4 6 5
4 5 4
5 6 6
9
1 0
4 5
1 2 1
2 3 1
3 4 1
1 4 2
2 4 1
10 15
2 10 97
2 6 18
7 1 63
5 4 62
7 5 93
1 3 10
6 9 99
3 7 73
2 7 6
5 9 22
5 3 82
4 2 36
8 1 50
10 3 20
7 9 69
10 15
10 5 79
4 2 33
4 8 41
9 3 97
5 2 25
2 6 9
2 10 66
8 3 38
10 8 89
1 10 83
1 7 91
7 3 94
7 10 40
7 2 70
2 3 82
10 15
3 8 84
7 10 34
1 10 14
1 9 60
7 6 49
8 5 39
4 5 96
4 7 78
7 3 33
2 8 56
8 9 71
5 2 83
3 6 61
7 9 63
2 6 43
10 15
1 10 25
1 3 14
10 5 72
8 3 18
2 5 41
4 9 86
6 8 17
6 2 98
5 6 34
1 8 90
7 1 65
7 2 63
8 7 71
4 2 64
9 6 50
10 15
2 7 13
5 10 52
5 2 5
10 6 47
9 4 23
8 10 54
1 10 20
4 10 8
6 1 87
8 2 43
8 1 87
6 3 53
3 1 87
2 3 82
4 6 91
10 15
1 2 14
4 1 89
7 6 8
9 4 81
5 2 81
10 9 6
1 5 44
1 3 33
2 6 25
6 10 10
1 10 65
6 9 74
8 10 41
2 3 89
5 10 2
10 15
9 8 14
2 10 66
10 5 73
2 3 98
1 3 30
6 5 3
2 1 84
2 6 33
10 8 24
5 8 34
7 1 69
3 7 60
7 4 38
4 10 65
3 4 32
1
6 7
1 3 1
1 2 2
2 3 3
3 4 0
4 6 5
4 5 4
5 6 6
0
Sample Output
Not Unique!
287
432
406
326
264
220
273
判断最小生成树是否唯一。。
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<map>
using std::map;
using std::min;
using std::sort;
using std::pair;
using std::vector;
using std::multimap;
#define pb(e) push_back(e)
#define sz(c) (int)(c).size()
#define mp(a, b) make_pair(a, b)
#define all(c) (c).begin(), (c).end()
#define iter(c) __typeof((c).begin())
#define cls(arr, val) memset(arr, val, sizeof(arr))
#define cpresent(c, e) (find(all(c), (e)) != (c).end())
#define rep(i, n) for(int i = 0; i < (int)n; i++)
#define tr(c, i) for(iter(c) i = (c).begin(); i != (c).end(); ++i)
const int N = 110;
const int INF = 0x3f3f3f3f;
int V, E;
struct edge {
int u, v, w;
inline bool operator<(const edge &x) const {
return w < x.w;
}
}G[(N * N) << 1], X[N * N];
struct Kruskal {
int par[N], rank[N];
inline void init() {
rep(i, V + 1) {
par[i] = i;
rank[i] = 0;
}
}
inline int find(int x) {
while(x != par[x]) {
x = par[x] = par[par[x]];
}
return x;
}
inline bool unite(int x, int y) {
x = find(x), y = find(y);
if(x == y) return false;
if(rank[x] < rank[y]) {
par[x] = y;
} else {
par[y] = x;
rank[x] += rank[x] == rank[y];
}
return true;
}
inline void built() {
int u, v, w;
rep(i, E) {
scanf("%d %d %d", &u, &v, &w);
G[i] = (edge){ u, v, w };
}
}
inline int kruskal_1(int &p) {
init();
int ans = 0;
rep(i, E) {
int u = G[i].u, v = G[i].v;
if(unite(u, v)) {
ans += G[i].w;
X[p++] = (edge){ u, v, G[i].w };
}
}
return ans;
}
inline int kruskal_2(int x, int y) {
init();
int ans = 0;
rep(i, E) {
int u = G[i].u, v = G[i].v;
if(u == x && y == v) continue;
if(unite(u, v)) {
ans += G[i].w;
}
}
return ans;
}
inline void solve() {
built();
sort(G, G + E);
int p = 0, ans = kruskal_1(p);
rep(i, p) {
int ret = kruskal_2(X[i].u, X[i].v);
int t = -1;
for(int j = 1; j <= V; j++) {
if(par[j] == j) t++;
}
if(t) continue;
if(ret == ans) { ans = -1; break; }
}
if(-1 == ans) puts("Not Unique!");
else printf("%d\n", ans);
}
}go;
int main() {
#ifdef LOCAL
freopen("in.txt", "r", stdin);
freopen("out.txt", "w+", stdout);
#endif
int t;
scanf("%d", &t);
while(t--) {
scanf("%d %d", &V, &E);
go.solve();
}
return 0;
}
poj 1679 The Unique MST的更多相关文章
- poj 1679 The Unique MST 【次小生成树】【模板】
题目:poj 1679 The Unique MST 题意:给你一颗树,让你求最小生成树和次小生成树值是否相等. 分析:这个题目关键在于求解次小生成树. 方法是,依次枚举不在最小生成树上的边,然后加入 ...
- poj 1679 The Unique MST(唯一的最小生成树)
http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submis ...
- poj 1679 The Unique MST (判定最小生成树是否唯一)
题目链接:http://poj.org/problem?id=1679 The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total S ...
- POJ 1679 The Unique MST (最小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22668 Accepted: 8038 D ...
- POJ 1679 The Unique MST (最小生成树)
The Unique MST 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/J Description Given a conn ...
- poj 1679 The Unique MST【次小生成树】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24034 Accepted: 8535 D ...
- POJ 1679 The Unique MST (次小生成树kruskal算法)
The Unique MST 时间限制: 10 Sec 内存限制: 128 MB提交: 25 解决: 10[提交][状态][讨论版] 题目描述 Given a connected undirect ...
- POJ 1679 The Unique MST 【最小生成树/次小生成树模板】
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22668 Accepted: 8038 D ...
- POJ 1679 The Unique MST 推断最小生成树是否唯一
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 22715 Accepted: 8055 D ...
随机推荐
- plsql自定义快捷键
说明:如 输入 sf按空格 就变成 SELECT * FROM 输入 w空格 就变成 WHERE 可以帮助你快速的写语句,配置如下图
- uinavigation样式
UINavigationController* pNav = [[UINavigationController alloc] initWithRootViewController:pView]; [p ...
- [前端 2]常用的JQuery和Dom页面取值与赋值
导读:书到用时方恨少,需要基础知识的时候,才悔恨自己没有总结学习好.前段时间调了好长时间的页面,突然发现自己之前不怎么在意的取值和赋值,真的是自己一个很薄弱的地方,有时候查半天都找不到一个对的,现在用 ...
- __main__:1: Warning: Unknown table 'employ' 0L
__main__:1: Warning: Unknown table 'employ' 0L from warnings import filterwarnings import MySQLdb fi ...
- 全选Form > Grid 的所有行
在AX的Grid 按Ctrl+A,并不一定能选择到grid 的所有行,比如你要将当前grid的数据复制到Excel,你需要全部选择所有行. 但AX自身的数据缓存机制,数据量非常大的时候当前grid只装 ...
- 对应键盘的ASCII码(备忘)
vbKeyLButton 1 鼠标左键 vbKeyRButton 2 鼠标右键 vbKeyCancel 3 CANCEL 键 vbKeyMButton 4 鼠标中键 vbKeyBack 8 Backs ...
- Qt事件处理机制
研一的时候开始使用Qt,感觉用Qt开发图形界面比MFC的一套框架来方便的多.后来由于项目的需要,也没有再接触Qt了.现在要重新拾起来,于是要从基础学起. Now,开始学习Qt事件处理机制. 先给出原文 ...
- java 字节流和字符流的区别
转载自:http://blog.csdn.net/cynhafa/article/details/6882061 java 字节流和字符流的区别 字节流与和字符流的使用非常相似,两者除了操作代码上的不 ...
- nginx url重写 rewrite实例
本文介绍下,在nginx中实现Url重写,学习rewrite的具体用法,有需要的朋友参考下吧. 原文地址:http://www.360doc.com/content/14/0202/20/142341 ...
- cpack
一. 简介 CPack是CMake 2.4.2之后的一个内置工具,主要作用就是生成制定类型的安装包.它可以脱离cmake单独运行. 二. 基本设置 (mandatory) 设置包类型set(CPACK ...