填个坑吧,学习了莫队算法。我也忘记是看的哪位大牛的博客&代码学习的了T_T,如果您发现了的话请私信我,我会注明学自您的代码。

另外感谢@PoPoQQQ大神

好,进入正文,莫队算法,也算是一种暴力吧,从某种意义上来说……是一种对暴力的强大优化= =

对于区间的莫队是基于【分块】的思想,这一点有些类似求离散对数的【大步小步算法】。

首先我们来考虑一个赤果果的暴力算法:对于每个询问,从L到R枚举一遍,统计每种袜子出现的次数,然后用组合数学的方法算出抽到两只相同袜子的方案数,和所有抽取袜子的总方案数。(至于求GCD然后约分什么的应该都懂的)

实际上,我们在进行暴力枚举的时候,有很多区间在不同的询问中计算了多次,而实际上这些已经进行过的计算完全是可以尽可能地进行再次利用的!两个相差不大的询问的结果相似度是很高的,我们完全可以在进行完一个[l,r]的计算后,进行少许更改,快速转移到[l',r']。

这就可以通过对询问顺序进行适当调整来实现:没错!排序!

那么问题来了:要按照什么样的顺序来排序呢?莫队发明的莫队算法提出了一种很科学的解决方案:分块。

把长度为N的序列分为sqrt(N)块,每块大小为sqrt(N),然后按 l 所在块的先后顺序排,l 在同一块内的按r的递增顺序排。(为什么这样分?根据基本不等式等等等等可以推出这样复杂度最低啊!当然如果带修改还会有别的分法)

排好序了,接下来就好办啦~先算出来这个块第一个询问的答案,然后不断执行-1+1调整区间。详细内容看代码注释吧~

 //BZOJ 2038
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
const int N=;
typedef long long LL; int n,sqr;
struct qes{
LL t,l,r;
bool operator < (const qes &a) const{
return (l/sqr)<(a.l/sqr) || (l/sqr)==(a.l/sqr) && r<a.r;
}//第一个条件是按 l 所在块排,第二个条件是按 r 单调增
}q[N]; LL gcd(LL a,LL b){
if (!b) return a;
else return gcd(b,a%b);
} LL Ans[N][]; int m,c[N],cnt[N]; int main(){
#ifndef ONLINE_JUDGE
freopen("file.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
sqr=int(sqrt(n));
F(i,,n) scanf("%d",&c[i]);
F(i,,m){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].t=i;
}
sort(q+,q+m+); LL rec;
int l,r;
F(i,,m){
if (i== || q[i].l/sqr != q[i-].l/sqr){
//如果是一个新的块就重新计算(将这个块第一个询问结果作为当前块所有询问的基底)
F(j,,n) cnt[j]=;
l=q[i].l; r=q[i].r;
F(j,l,r) ++cnt[c[j]];//本询问区间内计数统计
rec=;//rec表示选出相同袜子的方案数
F(j,,n) rec+=(LL)(cnt[j])*(LL)(cnt[j]-);
} //这三个for循环是 -1 +1 更新本节点的值
for(;r<q[i].r;++r){
//对于l在同一个块中的q,是按r单调增的顺序排序了的……
int s=c[r+];
rec-=(LL)(cnt[s])*(LL)(cnt[s]-);
++cnt[s];
rec+=(LL)(cnt[s])*(LL)(cnt[s]-);
//重新计算当前区间的答案
//比如原来是[2,3,3]现在变成了[2,3,3,3]那么就要减去颜色为3的袜子对答案的贡献
//再加上数量增加了1以后 它对答案的贡献
}
for(;l<q[i].l;++l){
//但是在同一块中,l并不一定是单调增的,所以会有向左右两个方向的调整
//这是向右
int s=c[l];
rec-=(LL)(cnt[s])*(LL)(cnt[s]-);
--cnt[s];
rec+=(LL)(cnt[s])*(LL)(cnt[s]-);
}
for(;l>q[i].l;--l){
//这是向左
int s=c[l-];
rec-=(LL)(cnt[s])*(LL)(cnt[s]-);
++cnt[s];
rec+=(LL)(cnt[s])*(LL)(cnt[s]-);
}
if (rec){
LL ret=gcd(rec,(LL)(r-l+)*(LL)(r-l));
Ans[q[i].t][]=rec/ret;
Ans[q[i].t][]=((LL)(r-l+)*(LL)(r-l))/ret;
} else Ans[q[i].t][]=,Ans[q[i].t][]=;//按询问顺序保存&输出
}
F(i,,m) printf("%lld/%lld\n",Ans[i][],Ans[i][]);
return ;
}

【BZOJ】【2038】小Z的袜子的更多相关文章

  1. bzoj 2038 小Z的袜子(hose)(莫队算法)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 11542  Solved: 5166[Sub ...

  2. (原创)BZOJ 2038 小Z的袜子(hose) 莫队入门题+分块

    I - 小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z ...

  3. BZOJ - 2038 小Z的袜子(普通莫队)

    题目链接:小Z的袜子 题意:$n$只袜子,$m$个询问,每次回答有多大概率在$[L,R]$区间内抽到两只颜色相同的袜子 思路:普通莫队,如果两个询问左端点在一个块内,则按询问右端点排序,否则按照所在块 ...

  4. BZOJ 2038 小z的袜子 & 莫队算法(不就是个暴力么..)

    题意: 给一段序列,询问一个区间,求出区间中.....woc! 贴原题! 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过 ...

  5. BZOJ 2038 小Z的袜子(hose) 莫队算法模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目大意: 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中 ...

  6. BZOJ 2038 小z的袜子(莫队)

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  7. [BZOJ 2038]小Z的袜子

    传送门:BZOJ 2038 题意很明确,是在给定的区间内任意选取两个数,求选到两个相同的数的概率. 所以我们得首先统计在给定的区间内,相同的数对有多少对,那么这里就使用到了莫队算法.如果对莫队算法还不 ...

  8. BZOJ 2038 小Z的袜子(hose)(分组)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2038 题意:给出n个袜子.m个询问,每个询问一个区间[L,R],询问这个区间中任意拿出两 ...

  9. bzoj 2038 小z的袜子 莫队例题

    莫队,利用可以快速地通过一个问题的答案得到另一问题的答案这一特性,合理地组织问题的求解顺序,将已解决的问题帮助解决当前问题,来优化时间复杂度. 典型用法:处理静态(无修改)离线区间查询问题. 线段树也 ...

  10. [bzoj] 2038 小Z的袜子(hose) || 莫队

    原题 给出一个序列,求给定[l,r]内有任意取两个数,有多大概率是一样的 简单的莫队,每次+-当前区间里有的这个颜色的袜子的个数,最后除以(r-l+1)*(r-l)/2即可. 记得约分. #inclu ...

随机推荐

  1. jquery easyui combobox

    $("#select_Dic").combobox({                        url: "http://www.cnblogs.com/Ajax/ ...

  2. zabbix介绍

    zabbix是一个基于WEB界面的提供分布式系统监视以及网络监视功能的企业级的开源解决方案. zabbix组件主要分两个: zabbix-server和zabbix-agent.支持的监控协议有ICM ...

  3. python restful 框架之 eve 外网访问设置

    官网地址: http://python-eve.org/ 配合mongodb进行crud使用起来很方便,但是部署的时候遇到一个问题,按照官网和Deom说的,servername使用 '127.0.0. ...

  4. php 显示内存 释放内存

    <?php //这只是个例子,下面的数字取决于你的系统 echo memory_get_usage() . "\n"; // 36640 $a = str_repeat(&q ...

  5. php获取客户端浏览器以及操作系统信息的方法

    发布:sunday01   来源:net   阅读: 2   [大 中 小] 在较为智能的程序中,php可以获取客户端浏览器及操作系统信息,然后根据浏览器及系统类型,加载不同的页面,以提供更加个性化的 ...

  6. centos yum 安装问题

    yum [Errno 256] No more mirrors to try 解决方法 输入下面的命令即可解决问题: yum clean all yum makecache 导致 centos安装软件 ...

  7. PHP-You don’t have permissions to access xxx on this server!

    问题如下图:   如果你是想要查看目录下的每一个文件,那么你需要修改一下httpd-conf配置文件,也就是apache的配置文件,以phpStudy2013为例,如下图打开: 然后找到如下部分,添加 ...

  8. Generate List and Table via ng-repeat

    <div ng-app ng-controller='StudentListController'> <ul> <li ng-repeat='student in stu ...

  9. asp.net 发布后用IP访问正常,用机器名访问布局出错

    问题如题[发布后IP访问正常,用机器名访问布局出现问题] 出现此问题的原因:IE文档模型发生变化,比如ip访问时IE文档模型为:IE10,换用机器名访问时,文档模型变为IE7 解决方法:设置默认IE版 ...

  10. python 关于 ImportError: No module named 的问题

    转载自:http://my.oschina.net/leejun2005/blog/109679 今天在 centos 下安装 python setup.py install 时报错:ImportEr ...