填个坑吧,学习了莫队算法。我也忘记是看的哪位大牛的博客&代码学习的了T_T,如果您发现了的话请私信我,我会注明学自您的代码。

另外感谢@PoPoQQQ大神

好,进入正文,莫队算法,也算是一种暴力吧,从某种意义上来说……是一种对暴力的强大优化= =

对于区间的莫队是基于【分块】的思想,这一点有些类似求离散对数的【大步小步算法】。

首先我们来考虑一个赤果果的暴力算法:对于每个询问,从L到R枚举一遍,统计每种袜子出现的次数,然后用组合数学的方法算出抽到两只相同袜子的方案数,和所有抽取袜子的总方案数。(至于求GCD然后约分什么的应该都懂的)

实际上,我们在进行暴力枚举的时候,有很多区间在不同的询问中计算了多次,而实际上这些已经进行过的计算完全是可以尽可能地进行再次利用的!两个相差不大的询问的结果相似度是很高的,我们完全可以在进行完一个[l,r]的计算后,进行少许更改,快速转移到[l',r']。

这就可以通过对询问顺序进行适当调整来实现:没错!排序!

那么问题来了:要按照什么样的顺序来排序呢?莫队发明的莫队算法提出了一种很科学的解决方案:分块。

把长度为N的序列分为sqrt(N)块,每块大小为sqrt(N),然后按 l 所在块的先后顺序排,l 在同一块内的按r的递增顺序排。(为什么这样分?根据基本不等式等等等等可以推出这样复杂度最低啊!当然如果带修改还会有别的分法)

排好序了,接下来就好办啦~先算出来这个块第一个询问的答案,然后不断执行-1+1调整区间。详细内容看代码注释吧~

 //BZOJ 2038
#include<cmath>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
using namespace std;
const int N=;
typedef long long LL; int n,sqr;
struct qes{
LL t,l,r;
bool operator < (const qes &a) const{
return (l/sqr)<(a.l/sqr) || (l/sqr)==(a.l/sqr) && r<a.r;
}//第一个条件是按 l 所在块排,第二个条件是按 r 单调增
}q[N]; LL gcd(LL a,LL b){
if (!b) return a;
else return gcd(b,a%b);
} LL Ans[N][]; int m,c[N],cnt[N]; int main(){
#ifndef ONLINE_JUDGE
freopen("file.in","r",stdin);
#endif
scanf("%d%d",&n,&m);
sqr=int(sqrt(n));
F(i,,n) scanf("%d",&c[i]);
F(i,,m){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].t=i;
}
sort(q+,q+m+); LL rec;
int l,r;
F(i,,m){
if (i== || q[i].l/sqr != q[i-].l/sqr){
//如果是一个新的块就重新计算(将这个块第一个询问结果作为当前块所有询问的基底)
F(j,,n) cnt[j]=;
l=q[i].l; r=q[i].r;
F(j,l,r) ++cnt[c[j]];//本询问区间内计数统计
rec=;//rec表示选出相同袜子的方案数
F(j,,n) rec+=(LL)(cnt[j])*(LL)(cnt[j]-);
} //这三个for循环是 -1 +1 更新本节点的值
for(;r<q[i].r;++r){
//对于l在同一个块中的q,是按r单调增的顺序排序了的……
int s=c[r+];
rec-=(LL)(cnt[s])*(LL)(cnt[s]-);
++cnt[s];
rec+=(LL)(cnt[s])*(LL)(cnt[s]-);
//重新计算当前区间的答案
//比如原来是[2,3,3]现在变成了[2,3,3,3]那么就要减去颜色为3的袜子对答案的贡献
//再加上数量增加了1以后 它对答案的贡献
}
for(;l<q[i].l;++l){
//但是在同一块中,l并不一定是单调增的,所以会有向左右两个方向的调整
//这是向右
int s=c[l];
rec-=(LL)(cnt[s])*(LL)(cnt[s]-);
--cnt[s];
rec+=(LL)(cnt[s])*(LL)(cnt[s]-);
}
for(;l>q[i].l;--l){
//这是向左
int s=c[l-];
rec-=(LL)(cnt[s])*(LL)(cnt[s]-);
++cnt[s];
rec+=(LL)(cnt[s])*(LL)(cnt[s]-);
}
if (rec){
LL ret=gcd(rec,(LL)(r-l+)*(LL)(r-l));
Ans[q[i].t][]=rec/ret;
Ans[q[i].t][]=((LL)(r-l+)*(LL)(r-l))/ret;
} else Ans[q[i].t][]=,Ans[q[i].t][]=;//按询问顺序保存&输出
}
F(i,,m) printf("%lld/%lld\n",Ans[i][],Ans[i][]);
return ;
}

【BZOJ】【2038】小Z的袜子的更多相关文章

  1. bzoj 2038 小Z的袜子(hose)(莫队算法)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 11542  Solved: 5166[Sub ...

  2. (原创)BZOJ 2038 小Z的袜子(hose) 莫队入门题+分块

    I - 小Z的袜子(hose) 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z ...

  3. BZOJ - 2038 小Z的袜子(普通莫队)

    题目链接:小Z的袜子 题意:$n$只袜子,$m$个询问,每次回答有多大概率在$[L,R]$区间内抽到两只颜色相同的袜子 思路:普通莫队,如果两个询问左端点在一个块内,则按询问右端点排序,否则按照所在块 ...

  4. BZOJ 2038 小z的袜子 & 莫队算法(不就是个暴力么..)

    题意: 给一段序列,询问一个区间,求出区间中.....woc! 贴原题! 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过 ...

  5. BZOJ 2038 小Z的袜子(hose) 莫队算法模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2038 题目大意: 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中 ...

  6. BZOJ 2038 小z的袜子(莫队)

    Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命……具体来说,小Z把这N只袜 ...

  7. [BZOJ 2038]小Z的袜子

    传送门:BZOJ 2038 题意很明确,是在给定的区间内任意选取两个数,求选到两个相同的数的概率. 所以我们得首先统计在给定的区间内,相同的数对有多少对,那么这里就使用到了莫队算法.如果对莫队算法还不 ...

  8. BZOJ 2038 小Z的袜子(hose)(分组)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2038 题意:给出n个袜子.m个询问,每个询问一个区间[L,R],询问这个区间中任意拿出两 ...

  9. bzoj 2038 小z的袜子 莫队例题

    莫队,利用可以快速地通过一个问题的答案得到另一问题的答案这一特性,合理地组织问题的求解顺序,将已解决的问题帮助解决当前问题,来优化时间复杂度. 典型用法:处理静态(无修改)离线区间查询问题. 线段树也 ...

  10. [bzoj] 2038 小Z的袜子(hose) || 莫队

    原题 给出一个序列,求给定[l,r]内有任意取两个数,有多大概率是一样的 简单的莫队,每次+-当前区间里有的这个颜色的袜子的个数,最后除以(r-l+1)*(r-l)/2即可. 记得约分. #inclu ...

随机推荐

  1. sqoop简单import使用

    一.sqoop作用? sqoop是一个数据交换工具,最常用的两个工具是导入导出. 导入导出的参照物是hadoop,向hadoop导数据就是导入. 二.sqoop的版本? sqoop目前有两个版本,1. ...

  2. python网页请求urllib2模块简单封装代码

    这篇文章主要分享一个python网页请求模块urllib2模块的简单封装代码. 原文转自:http://www.jbxue.com/article/16585.html 对python网页请求模块ur ...

  3. caused by android.system.errnoexception open failed eacces (permission denied)解决方案,安卓6.0(API23)权限问题

    在API23+以上,不止要在AndroidManifest.xml里面添加权限 <uses-permission android:name="android.permission.RE ...

  4. python的http请求应用--每日签到

    写点python吧,python其实是个很好用的工具,作为浇水语言,跟其他语言联系也很紧密,想用什么包直接import,导入ctypes调用底层函数库,导入web相关的包可以轻松写爬虫,今天我们写的跟 ...

  5. Nginx源码结构

    上一章对Nginx的架构有了一个初步的了解.这章,为了对源码仔细的剖析,先要对Nginx的源码结构有一个了解.从宏观上把握源码模块的结构. 一.nginx源码的3个目录结构 在安装的nginx的目录下 ...

  6. 关于asp.net和iis的进程/线程问题,假如网站有1000个人访问,会产生多少个进程/线程啊

    详解 ASP.NET异步   超好的文章

  7. MYSQL主键存在则更新,不存在则插入的解决方案(ON DUPLICATE KEY UPDATE)

    经常我们使用的最简单的数据库操作就是数据的更新,删除和插入,对于批量删除和插入的方法相信大家都很清楚,那么批量更新估计有的人就不知道了,并且还有批量插入,在插入时若有主键冲突则更新的操作,这在EAV模 ...

  8. 关于自定义的NavigationBar

    系统的NavigationBar局限太大,而且现在我要做的navigationBar需要四个按钮,一个Label,一个ImageView,所以不能用系统默认的. 刚刚咨询了一个高手,她的建议是,将系统 ...

  9. Modelsim的demo入门教程

    写在前面的话学过MCU设计的朋友都知道,系统调试是多么的重要.而对于FPGA设计来说,仿真确实最重要的.一个完整的项目,必须有完整的仿真平台.有朋友说,按键仿真模型没法搞. 我只能说,你并不了解硬件及 ...

  10. Machine Learning 学习笔记 (1) —— 线性回归与逻辑回归

    本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 梯度下降法 (Gradien ...