POJ 1743 (后缀数组 二分) Musical Theme
看来对height数组进行分段确实是个比较常用的技巧。
题意:
一个主题是可以变调的,也就是如果这个主题所有数字加上或者减少相同的数值,可以看做是相同的主题。
一个主题在原串中至少要出现两次,而且一定要有不相交的两次。
因为说了可以变调,所以我们处理每相邻两项的差值,这样就得到n-1个数字。然后找最大的不相交重复的连续子序列即可。
找这样的子序列还是要二分子序列的长度k,然后根据k对height进行分段,如果某一段的最大的sa值与最小的sa值相差超过k的话便符合要求。
然后强调一下几个容易出错的地方:
- 前面说一定要超过k才行,下面解释下为什么等于k是不可以的。比如说n=5, 序列为 0 3 8 11 16.求出相邻两项的差值为3 5 3 5,很明显子序列3 5是一个不相交的重复序列,但是第一个3 5 对应原序列的0 3 8,第二个3 5 对应原序列的 8 11 16. 显然,这有重叠的部分了。
- 我们在求出相邻两项差值的序列中找到最长不相交子序列后,假设长度为k,那么对应原序列中子序列的长度为k + 1
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; const int maxn = + ;
const int INF = ;
int n; struct SuffixArray
{
int s[maxn];
int sa[maxn];
int rank[maxn];
int height[maxn];
int t[maxn], t2[maxn], c[maxn];
int n; void clear() { n = ; memset(sa, , sizeof(sa)); } void build_sa(int m)
{
int i, *x = t, *y = t2;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[i] = s[i]]++;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[i]]] = i;
for(int k = ; k <= n; k <<= )
{
int p = ;
for(i = n - k; i < n; i++) y[p++] = i;
for(i = ; i < n; i++) if(sa[i] >= k) y[p++] = sa[i] - k;
for(i = ; i < m; i++) c[i] = ;
for(i = ; i < n; i++) c[x[y[i]]]++;
for(i = ; i < m; i++) c[i] += c[i - ];
for(i = n - ; i >= ; i--) sa[--c[x[y[i]]]] = y[i];
swap(x, y);
p = ; x[sa[]] = ;
for(i = ; i < n; i++)
x[sa[i]] = y[sa[i]]==y[sa[i-]] && y[sa[i]+k]==y[sa[i-]+k] ? p - : p++;
if(p >= n) break;
m = p;
}
} void build_height()
{
int i, j, k = ;
for(i = ; i < n; i++) rank[sa[i]] = i;
for(i = ; i < n; i++)
{
if(k) k--;
j = sa[rank[i] - ];
while(s[i + k] == s[j + k]) k++;
height[rank[i]] = k;
}
}
}; SuffixArray sa; bool ok(int len)
{
int Max, Min;
Max = Min = sa.sa[];
for(int i = ; i < n; i++)
{
if(sa.height[i] < len) Max = Min = sa.sa[i];
else
{
Max = max(Max, sa.sa[i]);
Min = min(Min, sa.sa[i]);
if(Max - Min > len) return true;
}
}
return false;
} int solve()
{
int L = , R = n / , M;
while(L < R)
{
M = (L + R + ) / ;
if(ok(M)) L = M;
else R = M - ;
}
return L;
} int main()
{
//freopen("in.txt", "r", stdin); while(scanf("%d", &n) == && n)
{
sa.clear(); int pre, now; scanf("%d", &pre);
n--;
for(int i = ; i < n; i++)
{
scanf("%d", &now);
sa.s[i] = now - pre + ;
pre = now;
}
sa.s[n] = ;
sa.n = n;
sa.build_sa();
sa.build_height();
int ans = solve();
printf("%d\n", ans >= ? ans + : );
} return ;
}
代码君
POJ 1743 (后缀数组 二分) Musical Theme的更多相关文章
- Musical Theme POJ - 1743 后缀数组
A musical melody is represented as a sequence of N (1<=N<=20000)notes that are integers in the ...
- POJ 1743 后缀数组
题目链接:http://poj.org/problem?id=1743 题意:给定一个钢琴的音普序列[值的范围是(1~88)],现在要求找到一个子序列满足 1,长度至少为5 2,序列可以转调,即存在两 ...
- POJ 1743 (后缀数组+不重叠最长重复子串)
题目链接: http://poj.org/problem?id=1743 题目大意:楼教主の男人八题orz.一篇钢琴谱,每个旋律的值都在1~88以内.琴谱的某段会变调,也就是说某段的数可以加减一个旋律 ...
- poj 1743 后缀数组 最长不重叠子串
Musical Theme Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 30941 Accepted: 10336 D ...
- POJ 2774 后缀数组 || 二分+哈希
Long Long Message Time Limit: 4000MS Memory Limit: 131072K Total Submissions: 35607 Accepted: 14 ...
- poj 1743 后缀数组 求最长不重叠重复子串
题意:有N(1 <= N <=20000)个音符的序列来表示一首乐曲,每个音符都是1..88范围内的整数,现在要找一个重复的主题. “主题”是整个音符序列的一个子串,它需要满足如下条件:1 ...
- [八分之一的男人]POJ - 1743 后缀数组 height分组 带详解
题意:求最长不可重叠的相同差值子串的长度 这道题算是拖了好几个月,现在花了点时间应该搞懂了不少,尝试分析一下 我们首先来解决一个退化的版本,求最长不可重叠的相同子串(差值为0) 比如\(aabaaba ...
- POJ 3261 (后缀数组 二分) Milk Patterns
这道题和UVa 12206一样,求至少重复出现k次的最长字串. 首先还是二分最长字串的长度len,然后以len为边界对height数组分段,如果有一段包含超过k个后缀则符合要求. #include & ...
- POJ 3261 后缀数组+二分
思路: 论文题- 二分+对后缀分组 这块一开始不用基数排序 会更快的(其实区别不大) //By SiriusRen #include <cstdio> #include <cstri ...
随机推荐
- javascript (js)中的基本概念
1. 基本数据类型 1.1 number (数字)在js中没有整形和浮点型的区分,所有的数字都是浮点型标识, 采用64位的浮点格式来表示数字.如果数字类型用在字符串连接表达式中,则会自动转换成字符串, ...
- IO端口和IO内存
为什么会有IO端口和IO内存 这主要原因是因为处理器的架构不同,这里我们使用arm来代表典型的使用IO内存架构,intel 80x86代表典型的使用IO端口架构.简单来说arm把所有寄存器(包括外部设 ...
- Unity3D研究院之LZMA压缩文件与解压文件
原地址:http://www.xuanyusong.com/archives/3095 前两天有朋友告诉我Unity的Assetbundle是LZMA压缩的,刚好今天有时间那么就研究研究LZMA.它是 ...
- Assembly(c#中简单说明[转]
什么是Assembly(程序集)?Assembly是一个包含来程序的名称,版本号,自我描述,文件关联关系和文件位置等信息的一个集合.在.net框架中通过Assembly类来支持,该类位于System. ...
- 开始使用Mac OS X——写给Mac新人
本文转自博客园:http://www.cnblogs.com/chijianqiang/archive/2011/08/03/2126593.html 写这篇文档的原因有两个,一.身边使用Mac的朋友 ...
- 2016CVTE编程题:兔子藏洞
兔子藏洞 题目描述 一只兔子藏身于20个圆形排列的洞中(洞从1开始编号),一只狼从x号洞开始找,下次隔一个洞找(及在x+2号洞找),在下次个两个洞找(及在x+5号洞找),以此类推...它找了n次仍然没 ...
- 【Apache运维基础(3)】虚拟主机配置说明
建议在主配置文件中增加一句 Include conf/vhosts/*.conf 然后就在vhosts目录下添加虚拟主机配置文件 在配置前打开NameVirtualHost *:80注释,注意此处要与 ...
- JavaScript的基础语法,你真的了解吗?
这篇文章是在我们熟悉了JS的基础语法后,很少有人去关注的一些细节部分.如果掌握了某些细节也许会对代码的改善有着非凡的作用.也许会使我们的代码更严谨,更高效. 1.if语句的条件 if条件中,括号里是布 ...
- ios开发--GCD使用介绍:4-延迟执行操作
在开发过程中,我们有时会希望把一些操作封装起来延迟一段时间后再执行.iOS开发中,有两种常用的方法可以实现延迟执行,一种是使用GCD,另外一种是使用NSRunLoop类中提供的方法. 1.使用GCD实 ...
- Qt通过UDP传图片,实现自定义分包和组包
一.包头结构体 //包头 struct PackageHeader { //包头大小(sizeof(PackageHeader)) unsigned int uTransPackageHdrSize; ...