5.SVM核函数
核函数(Kernels)
定义 1.1 (核或正定核) 设
是
中的一个子集,称定义在
上的函数
是核函数,如果存在一个从
到Hilbert空间
的映射

使得对任意的
,
都成立。其中
表示Hilbert空间
中的内积。
在低纬度空间里不可分的问题,我们可以通过将其向高纬度空间转化,使其线性可分。而转换的关键是找到低维空间向高纬的映射方法。
考虑我们最初在“线性回归”中提出的问题,特征是房子的面积x,这里的x是实数,结果y是房子的价格。假设我们从样本点的分布中看到x和y符合3次曲线,那么我们希望使用x的三次多项式来逼近这些样本点。那么首先需要将特征x扩展到三维
,然后寻找特征和结果之间的模型。我们将这种特征变换称作特征映射(feature mapping)。映射函数称作
,在这个例子中

我们希望将得到的特征映射后的特征应用于SVM分类,而不是最初的特征。这样,我们需要将前面
公式中的内积从
,映射到
。
至于为什么需要映射后的特征而不是最初的特征来参与计算,上面提到样例可能存在线性不可分的情况,而将特征映射到高维空间后,往往就可分了,同时也为达到更好地拟合效果。
根据核函数的定义,如果原始特征内积是
,映射后为
,那么定义核函数(Kernel)为

可见,核函数接受低维空间的输入值,却能算出高维空间的内积值。如果按照传统方法,需先计算
,然后计算
,然而这种计算方式是非常低效的。比如最初的特征是n维的,我们将其映射到
维,然后再计算,这样需要
的时间。通过核函数极大地减少了计算时间。
先看一个例子,假设x和z都是n维的,

展开后,得

这个时候发现我们可以只计算原始特征x和z内积的平方,就等价与计算映射后特征的内积。
现在看一下映射函数(n=2时),根据上面的公式,得到

也就是说核函数
只能在选择这样的
作为映射函数时才能够等价于映射后特征的内积。
再看一个核函数

对应的映射函数(n=2时)


由于计算的是内积,我们可以想到IR中的余弦相似度,如果x和z向量夹角越小,那么核函数值越大,反之,越小。因此,核函数值是
和
的相似度。
再看另外一个核函数

这时,如果
和
很相近(
),那么核函数值为1,如果x和z相差很大(
),那么核函数值约等于0。由于这个函数类似于高斯分布,因此称为高斯核函数,也叫做径向基函数(Radial Basis Function 简称RBF)。它能够把原始特征映射到无穷维。
使用核函数后,怎么分类新来的样本呢?线性的时候我们使用SVM学习出w和b,新来样本x的话,我们使用
来判断,如果值大于等于1,那么是正类,小于等于是负类。在两者之间,认为无法确定。如果使用了核函数后,
就变成了
,是否先要找到
,然后再预测?答案肯定不是了,找
很麻烦,回想我们之前说过的

只需将
替换成
,然后值的判断同上。
核函数不仅仅用在SVM上,但凡在一个模型后算法中出现了
,我们都可以常使用
去替换,这可能能够很好地改善我们的算法。
5.SVM核函数的更多相关文章
- libsvm的安装,数据格式,常见错误,grid.py参数选择,c-SVC过程,libsvm参数解释,svm训练数据,libsvm的使用详解,SVM核函数的选择
直接conda install libsvm安装的不完整,缺几个.py文件. 第一种安装方法: 下载:http://www.csie.ntu.edu.tw/~cjlin/cgi-bin/libsvm. ...
- SVM核函数与软间隔
核函数 在上文中我们已经了解到使用SVM处理线性可分的数据,而对于非线性数据需要引入核函数的概念它通过将数据映射到高维空间来实现线性可分.在线性不可分的情况下,支持向量机通过某种事先选择的非线性映射( ...
- 【模式识别】SVM核函数
下面是几种经常使用的核函数表示: 线性核(Linear Kernel) 多项式核(Polynomial Kernel) 径向基核函数(Radial Basis Function) 也叫高斯核(Gaus ...
- 【机器学习】SVM核函数
知识预备 1. 回顾:logistic回归出发,引出了SVM,即支持向量机[续]. 2. Mercer定理:如果函数K是上的映射(也就是从两个n维向量映射到实数域).那么如果K是一个有效核函数(也称 ...
- svm核函数的理解和选择
https://blog.csdn.net/leonis_v/article/details/50688766 特征空间的隐式映射:核函数 咱们首先给出核函数的来头:在上文中,我们已经了解到了S ...
- SVM – 核函数
核函数的起源是对于线性不可分的分类情况,其实可以通过p次方多项式,及非线性模型进行分类:然后对于这类非线性多次方的,其实可以按照广义线性模型来进行升维变形,使之成为线性模型,这样就可以放到SVM中来进 ...
- svm常用核函数
SVM核函数的选择对于其性能的表现有至关重要的作用,尤其是针对那些线性不可分的数据,因此核函数的选择在SVM算法中就显得至关重要.对于核技巧我们知道,其目的是希望通过将输入空间内线性不可分的数据映射到 ...
- opencv7-ml之svm
因为<opencv_tutorial>这部分只有两个例子,就先暂时介绍两个例子好了,在refman中ml板块有:统计模型.普通的贝叶斯分类器.KNN.SVM.决策树.boosting.随机 ...
- SVM学习笔记
一.SVM概述 支持向量机(support vector machine)是一系列的监督学习算法,能用于分类.回归分析.原本的SVM是个二分类算法,通过引入“OVO”或者“OVR”可以扩展到多分类问题 ...
随机推荐
- Android Studio 多个编译环境配置 多渠道打包 APK输出配置
看完这篇你学到什么: 熟悉gradle的构建配置 熟悉代码构建环境的目录结构,你知道的不仅仅是只有src/main 开发.生成环境等等环境可以任意切换打包 多渠道打包 APK输出文件配置 需求 一般我 ...
- 恢复SQL Server被误删除的数据
恢复SQL Server被误删除的数据 <恢复SQL Server被误删除的数据(再扩展)> 地址:http://www.cnblogs.com/lyhabc/p/4620764.html ...
- HTTPS 互联网世界的安全基础
近一年公司在努力推进全站的 HTTPS 化,作为负责应用系统的我们,在配合这个趋势的过程中,顺便也就想去搞清楚 HTTP 后面的这个 S 到底是个什么含义?有什么作用?带来了哪些影响?毕竟以前也就只是 ...
- 关于微软HttpClient使用,避免踩坑
最近公司对于WebApi的场景使用也越来越加大了,随之而来就是Api的客户端工具我们使用哪个?我们最常用的估计就是HttpClient,在微软类库中命名空间地址:System.Net.Http,是一个 ...
- MySQL数据库和InnoDB存储引擎文件
参数文件 当MySQL示例启动时,数据库会先去读一个配置参数文件,用来寻找数据库的各种文件所在位置以及指定某些初始化参数,这些参数通常定义了某种内存结构有多大等.在默认情况下,MySQL实例会按照一定 ...
- Win.ini和注册表的读取写入
最近在做打包的工作,应用程序的配置信息可以放在注册表文件中,但是在以前的16位操作系统下,配置信息放在Win.ini文件中.下面介绍一下Win.ini文件的读写方法和注册表的编程. 先介绍下Win.i ...
- AFNetworking 3.0 源码解读 总结(干货)(上)
养成记笔记的习惯,对于一个软件工程师来说,我觉得很重要.记得在知乎上看到过一个问题,说是人类最大的缺点是什么?我个人觉得记忆算是一个缺点.它就像时间一样,会自己消散. 前言 终于写完了 AFNetwo ...
- java使用websocket,并且获取HttpSession,源码分析
转载请在页首注明作者与出处 http://www.cnblogs.com/zhuxiaojie/p/6238826.html 一:本文使用范围 此文不仅仅局限于spring boot,普通的sprin ...
- 快速了解微信小程序的使用,一个根据小程序的框架开发的todos app
微信官方已经开放微信小程序的官方文档和开发者工具.前两天都是在看相关的新闻来了解小程序该如何开发,这两天官方的文档出来之后,赶紧翻看了几眼,重点了解了一下文档中框架与组件这两个部分,然后根据简易教程, ...
- 一行代码实现java list去重
1.不带类型写法: 1 List listWithoutDup = new ArrayList(new HashSet(listWithDup)); 2.带类型写法(以String类型为例):1)Ja ...