[51NOD1181]质数中的质数(质数筛法)(欧拉筛)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1181
思路:欧拉筛出所有素数和一个数的判定,找到大于n的最小质数序号p,并且判断p是不是质数,输出这个数。
/*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%lld", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(int i = 0; i < (len); i++)
#define For(i, a, len) for(int i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Full(a) memset((a), 0x7f7f7f, sizeof(a))
#define lrt rt << 1
#define rrt rt << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef pair<string, int> psi;
typedef pair<LL, LL> pll;
typedef map<string, int> msi;
typedef vector<int> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; const int maxn = ;
int n, pcnt;
bool isprime[maxn];
int prime[maxn]; int main() {
// FRead();
Cls(prime); Clr(isprime, true); pcnt = ;
For(i, , maxn) {
if(isprime[i]) prime[++pcnt] = i;
For(j, , pcnt+) {
if(i * prime[j] > maxn) break;
isprime[i*prime[j]] = ;
if(i % prime[j] == ) break;
}
}
while(~Rint(n)) {
int p = ;
while(prime[p] < n) p++;
while() {
if(isprime[p]) break;
p++;
}
printf("%d\n", prime[p]);
}
RT ;
}
[51NOD1181]质数中的质数(质数筛法)(欧拉筛)的更多相关文章
- Java实现欧拉筛与花里胡哨求质数高级大法的对比
我也不清楚这是什么高级算法,欧拉筛是昨天有位大佬,半夜无意间告诉我的 欧拉筛: 主要的含义就是我把这个数的所有倍数都弄出来,然后下次循环的时候直接就可以跳过了 import java.text.Sim ...
- 欧拉筛,线性筛,洛谷P2158仪仗队
题目 首先我们先把题目分析一下. emmmm,这应该是一个找规律,应该可以打表,然后我们再分析一下图片,发现如果这个点可以被看到,那它的横坐标和纵坐标应该互质,而互质的条件就是它的横坐标和纵坐标的最大 ...
- noip复习——线性筛(欧拉筛)
整数的唯一分解定理: \(\forall A\in \mathbb {N} ,\,A>1\quad \exists \prod\limits _{i=1}^{s}p_{i}^{a_{i}}=A\ ...
- POJ3090 Visible Lattice Points 欧拉筛
题目大意:给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 线y=x和坐标轴上的点都被(1,0)(0,1)(1,1)挡住了.除这三个钉子外,如果一个点(x,y)不互质,则 ...
- 2018南京icpc-J-Prime Game (欧拉筛+唯一分解定理)
题意:给定n个数ai(n<=1e6,ai<=1e6),定义,并且fac(l,r)为mul(l,r)的不同质因数的个数,求 思路:可以先用欧拉筛求出1e6以内的所有质数,然后对所有ai判断, ...
- POJ2635(数论+欧拉筛+大数除法)
题目链接:https://vjudge.net/problem/POJ-2635 题意:给定一个由两个质数积的大数M和一个数L,问大数M的其中较小的质数是否小于L. 题解:因为大数M已经超过long ...
- POJ-3126.PrimePath(欧拉筛素数打表 + BFS)
给出一篇有关素数线性筛和区间筛的博客,有兴趣的读者可以自取. 本题大意: 给定两个四位的素数,没有前导零,每次变换其中的一位,最终使得两个素数相等,输出最小变换次数.要求变换过程中的数也都是素数. 本 ...
- 欧拉筛(线性筛) & 洛谷 P3383 【模板】线性筛素数
嗯.... 埃氏筛和欧拉筛的思想都是相似的: 如果一个数是素数,那么它的所有倍数都不是素数.... 这里主要介绍一下欧拉筛的思路:(欧拉筛的复杂度大约在O(n)左右... 定义一个prime数组,这个 ...
- [SDOI2008]仪仗队(欧拉筛裸题)
题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如右图 ...
随机推荐
- 【BZOJ】【4004】【JLOI2015】装备购买
拟阵/贪心 题解戳这里:http://blog.csdn.net/popoqqq/article/details/45148309 思路: 裸拟阵…… 维护线性基,将武器按价格排序,从小到大塞进去,如 ...
- Linux配置防火墙,开启80端口、3306端口(转)
vi /etc/sysconfig/iptables -A INPUT -m state –state NEW -m tcp -p tcp –dport 80 -j ACCEPT(允许80端口通过防火 ...
- Hadoop分布式配置
本作品由Man_华创作,采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可.基于http://www.cnblogs.com/manhua/上的作品创作. 请先参照Linux安 ...
- 禁用backspace键的后退功能
禁用backspace键的后退功能,但是可以删除文本内容<script language="JavaScript">document.onkeydown = check ...
- 使用Assetbundle时可能遇到的坑
原地址:http://www.cnblogs.com/realtimepixels/p/3652128.html 一 24 十一郎未分类 No Comments 转自 http://www.unity ...
- python模拟shell
import fileinput import readline raw_input(xxx) exec filepinput.input
- Grid分组特性
Ext.onReady(function () { Ext.define('personInfo', { extend: 'Ext. ...
- Random的用法
import java.util.Random; public class RandomTest { public static void main(String[] args) { Random r ...
- 由浅入深了解Thrift之微服务化应用架构
为什么选择微服务 一般情况下,业务应用我们都会采用模块化的分层式架构,所有的业务逻辑代码最终会在一个代码库中并统一部署,我们称这种应用架构为单体应用. 单体应用的问题是,全部开发人员会共享一个代码库, ...
- POJ 1679 The Unique MST(次小生成树)
题意:求解最小生成树的权值是否唯一,即要我们求次小生成树的权值两种方法求最小生成树,一种用prim算法, 一种用kruskal算法 一:用prim算法 对于给定的图,我们可以证明,次小生成树可以由最小 ...