F. Relatively Prime Powers (求([2,n],内不是次方的数量)
题目:经过提炼后, 题目的意思就是问[2,n] 内,不是次方数的数量 ,;
思路:
答案就是
原理是利用容斥,注意n开i次根是向下取整(这题巨卡精度)
这是大神的思路 ,, 我还没有理解, 先放着,等以后在来思考 , 先当模板使用
#include <bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) using namespace std; const int K = ;
const int N = * + ;
const long long INF64 = 3e18; int mu[K]; void precalc(){
static bool prime[K];
static int lst[K]; memset(prime, false, sizeof(prime));
forn(i, K) lst[i] = i; for (int i = ; i < K; ++i){
if (lst[i] == i) mu[i] = ;
for (int j = * i; j < K; j += i){
lst[j] = min(lst[j], lst[i]);
if (lst[j] == lst[i])
mu[j] = ;
else
mu[j] = -mu[i];
}
}
} int mx[K]; long long binpow(long long a, int b){
long long res = ;
while (b){
if (b & ){
if (res < INF64 / a) res *= a;
else return INF64;
}
if (b > ){
if (a < INF64 / a) a *= a;
else return INF64;
}
b >>= ;
}
return res;
} long long calc(long long n){
int pw = - __builtin_clzll(n);
for (int i = ; i <= pw; ++i){
if (mu[i] == ) continue;
while (binpow(mx[i], i) > n)
--mx[i];
} long long res = n - ;
for (int i = ; i <= pw; ++i)
res -= mu[i] * (mx[i] - ); return res;
} int get_sqrt(long long n){
int l = , r = ;
while (l < r - ){
int m = (l + r) / ;
if (m * 1ll * m <= n)
l = m;
else
r = m;
}
return (r * 1ll * r <= n ? r : l);
} long long ans[N]; int main() {
precalc();
int T;
scanf("%d", &T);
vector<pair<long long, int> > q; forn(i, T){
long long n;
scanf("%lld", &n);
q.push_back({n, i});
} sort(q.begin(), q.end(), greater<pair<long long, int> >());
mx[] = ;
mx[] = ;
mx[] = ;
for (int i = ; i < K; ++i)
mx[i] = ; forn(z, T){
long long n = q[z].first;
mx[] = get_sqrt(n);
ans[q[z].second] = calc(n);
} forn(i, T)
printf("%I64d\n", ans[i]);
return ;
}
F. Relatively Prime Powers (求([2,n],内不是次方的数量)的更多相关文章
- SGU 231 Prime Sum 求<=n内有多少对素数(a,b)使得a+b也为素数 规律题
题目链接:contest=0&problem=231">点击打开链接 题意: 求<=n内有多少对素数(a,b)使得a+b也为素数 思路: 我们发现全部素数间隔都是> ...
- Educational Codeforces Round 50 (Rated for Div. 2) F - Relatively Prime Powers(数学+容斥)
题目链接:http://codeforces.com/contest/1036/problem/F 题意: 题解:求在[2,n]中,x != a ^ b(b >= 2 即为gcd)的个数,那么实 ...
- Educational Codeforces Round 50 (Rated for Div. 2)F. Relatively Prime Powers
实际上就是求在[2,n]中,x != a^b的个数,那么实际上就是要求x=a^b的个数,然后用总数减掉就好了. 直接开方求和显然会有重复的数.容斥搞一下,但实际上是要用到莫比乌斯函数的,另外要注意减掉 ...
- 省赛i题/求1~n内所有数对(x,y),满足最大公约数是质数的对数
求1~n内所有数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数,最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...
- P1886 滑动窗口&&P1440 求m区间内的最小值
声明:下面这两个题就不要暴力了,学一学单调队列吧 推荐博文:https://www.cnblogs.com/tham/p/8038828.html 单调队列入门题 P1440 求m区间内的最小值 题目 ...
- 省赛i题/求1~n内全部数对(x,y),满足最大公约数是质数的对数
求1~n内全部数对(x,y),gcd(x,y)=质数,的对数. 思路:用f[n]求出,含n的对数.最后用sum[n]求和. 对于gcd(x,y)=a(设x<=y,a是质数),则必有gcd(x/a ...
- 洛谷 P1440 求m区间内的最小值
传送门 思路 由于数据范围很大,所以使用单调队列,和滑动窗口这道题类似 首先第一个数输出\(0\),因为第一个数之前没有数 然后通过样例我们发现,最后一个数并没有派上什么用场,所以循环\(n-1\)轮 ...
- Relatively Prime Powers CodeForces - 1036F (莫比乌斯函数容斥)
Relatively Prime Powers CodeForces - 1036F Consider some positive integer xx. Its prime factorizatio ...
- LG1440 求 m 区间内的最小值
题目描述 一个含有 \(n\) 项的数列 (\(n≤ 2000000\)),求出每一项前的 \(m\) 个数到它这个区间内的最小值.若前面的数不足 \(m\) 项则从第 \(1\) 个数开始,若前面没 ...
随机推荐
- 2017-2018-1 20179215《Linux内核原理与分析》第二周作业
20179215<Linux内核原理与分析>第二周作业 这一周主要了解了计算机是如何工作的,包括现在存储程序计算机的工作模型.X86汇编指令包括几种内存地址的寻址方式和push.pop.c ...
- INT 21H 指令说明及使用方法
很多初学汇编语言的同学可能会对INT 21H这条指令感到困惑,不知道是什么意思,下面就以一段简单的程序为大家讲解: 例如:需要键盘输入,并且回显. AH的值需要查表取得,表在下面 指令: M ...
- 用遗传算法解决TSP问题
浅谈遗传算法:https://www.cnblogs.com/AKMer/p/9479890.html Description \(小m\)在踏上寻找\(小o\)的路程之后不小心碰到了大魔王\(fat ...
- bzoj 2648 SJY摆棋子 —— K-D树
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2648 学习资料:https://blog.csdn.net/zhl30041839/arti ...
- netty中的EventLoop和EventLoopGroup
Netty框架的主要线程就是I/O线程,线程模型设计的好坏,决定了系统的吞吐量.并发性和安全性等架构质量属性. 一.Netty的线程模型 在讨论Netty线程模型时候,一般首先会想到的是经典的Reac ...
- 集群重启某一主机下所有osd down解决办法
标签(空格分隔): ceph 运维 osd 问题描述: 掉电后,上电发现cluster中的主机node3下的所有osd都down掉了,通过命令重启node3的ceph-osd服务,osd依然无法up: ...
- Servlet的生命周期以及简单工作原理的讲解
Servlet生命周期分为三个阶段: 1,初始化阶段 调用init()方法 2,响应客户请求阶段 调用service()方法 3,终止阶段 调用destr ...
- java基础知识(5)---继承
继 承:(面向对象特征之一)好处:1:提高了代码的复用性.2:让类与类之间产生了关系,提供了另一个特征多态的前提. 父类的由来:其实是由多个类不断向上抽取共性内容而来的.java中对于继承,java只 ...
- DNS服务器的配置与管理
安装DNS服务器: 在"服务器管理器"-"角色"-"添加角色"中安装DNS服务器. 选择DNS服务器 点下一步安装,然后安装 固定服务器IP ...
- [51nod1272]最大距离(贪心)
解题关键:对num进行排序,从前往后扫id,及时更新 #include<cstdio> #include<cstring> #include<algorithm> ...