1014 Waiting in Line (30)(30 分)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:
- The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (NM+1)st one will have to wait in a line behind the yellow line.
- Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
- Customer[i] will take T[i] minutes to have his/her transaction processed.
- The first N customers are assumed to be served at 8:00am.
Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.
For example, suppose that a bank has 2 windows and each window may have 2 customers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer~1~ is served at window~1~ while customer~2~ is served at window~2~. Customer~3~ will wait in front of window~1~ and customer~4~ will wait in front of window~2~. Customer~5~ will wait behind the yellow line.
At 08:01, customer~1~ is done and customer~5~ enters the line in front of window~1~ since that line seems shorter now. Customer~2~ will leave at 08:02, customer~4~ at 08:06, customer~3~ at 08:07, and finally customer~5~ at 08:10.
Input
Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (<=20, number of windows), M (<=10, the maximum capacity of each line inside the yellow line), K (<=1000, number of customers), and Q (<=1000, number of customer queries).
The next line contains K positive integers, which are the processing time of the K customers.
The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.
Output
For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output "Sorry" instead.
Sample Input
2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
Sample Output
08:07优先队列。首先前n*m个人可以被直接容纳,紧接着就要看哪个队的第一个人先完成,那么这一队就空出一个位置,然后,就可以再插一个人,那么这一队原来的第二人就变成了本队的第一人,依次下去,每次都要知道所有队的第一人谁先办理完业务,所以用到优先队列。
08:06
08:10
17:00
Sorry
代码:
#include <bits/stdc++.h> using namespace std;
int n,m,k,q;
int qq;
int s[],r[];///s记录每一队最后一人办完的时间总数,方便之后新插入人的时间总数 r记录第一人办完的时间总数,方便知道是否有空可以插人
int c[],need[];///c记录每个人办理结束的总的时间,need记录从开始办理到结束办理花费的时间,只要 开始办理的时间在17点之前就可以
typedef pair<int,int> P;
void print(int t)
{
if(c[t] - need[t] >= )puts("Sorry");
else printf("%02d:%02d\n", + c[t] / ,c[t] % );
}
int main()
{
scanf("%d%d%d%d",&n,&m,&k,&q);
queue<int> que[];
priority_queue<P,vector<P>,greater<P> > pq;
for(int i = ;i < min(k,n * m);i ++)
{
scanf("%d",&need[i]);
que[i % n].push(need[i]);
c[i] = (s[i % n] += need[i]);
if(i >= n * (m - ))
{
pq.push(P(que[i % n].front(),i % n));
que[i % n].pop();
}
}
for(int i = ;i + n * m < k;i ++)
{
scanf("%d",&need[i + n * m]);
int present = pq.top().second,time = pq.top().first;
pq.pop();
que[present].push(need[i + n * m]);
s[present] += need[i + n * m];
c[i + n * m] = s[present];
time += que[present].front();
que[present].pop();
pq.push(P(time,present));
}
for(int i = ;i < q;i ++)
{
scanf("%d",&qq);
print(qq - );
}
}
1014 Waiting in Line (30)(30 分)的更多相关文章
- PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)
1014 Waiting in Line (30 分) Suppose a bank has N windows open for service. There is a yellow line ...
- 1014 Waiting in Line (30分)
1014 Waiting in Line (30分) Suppose a bank has N windows open for service. There is a yellow line i ...
- PAT 1014 Waiting in Line (模拟)
1014. Waiting in Line (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Suppo ...
- PAT甲级1014. Waiting in Line
PAT甲级1014. Waiting in Line 题意: 假设银行有N个窗口可以开放服务.窗前有一条黄线,将等候区分为两部分.客户要排队的规则是: 每个窗口前面的黄线内的空间足以包含与M个客户的一 ...
- PTA (Advanced Level) 1014 Waiting in Line
Waiting in Line Suppose a bank has N windows open for service. There is a yellow line in front of th ...
- 1014 Waiting in Line (30 分)
Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...
- PTA 1014 Waiting in Line (30分) 解题思路及满分代码
题目 Suppose a bank has N windows open for service. There is a yellow line in front of the windows whi ...
- PAT 1014 Waiting in Line (30分) 一个简单的思路
这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...
- 【PAT甲级】1014 Waiting in Line (30 分)(队列维护)
题面: 输入四个正整数N,M,K,Q(N<=20,M<=10,K,Q<=1000),N为银行窗口数量,M为黄线内最大人数,K为需要服务的人数,Q为查询次数.输入K个正整数,分别代表每 ...
随机推荐
- Lumen开发:结合Redis实现消息队列(2)
上一篇讲了Lumen配置Redis,现在来讲一下,如何实现消息队列 2.编写任务类 2.1 任务类结构 默认情况下,应用的所有队列任务都存放在app/Jobs目录.任务类非常简单,正常情况下只包含一 ...
- c语言的编译和运行流程
C语言源程序经过编译器进行词法分析 语法分析 等过程生成中间语言(object后缀的文件)编译期间会生成一个字符表和静态分配空间(如new static 全局变量)它们所需的内存空间可以计算出来放在链 ...
- 研究怎么运用xcode处理常见的调试问题
本文转载至 http://blog.csdn.net/zhuzhihai1988/article/details/7749022 所谓磨刀不误砍柴工,这里菜鸟我在研究怎么运用xcode处理常见的调试问 ...
- maven-tomcat7;IOC;AOP;数据库远程连接
[说明]真的是好烦下载插件啊,maven-tomcat7 插件试了好多次都不行,下载不成:部署不成:好不容易从github中得到的springmvc项目也是运行不起来,中间又是查了许多东西,绕着绕着都 ...
- 【BZOJ2741】【FOTILE模拟赛】L 分块+可持久化Trie树
[BZOJ2741][FOTILE模拟赛]L Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max( ...
- Java学习笔记——java介绍
Java开源语言 C语言闭源语言 IOS闭源系统 采用object-c语言开发 应用程序分类(从类型分类) C/S(Client Server):不联网的软件也属于C/S B/S(Browser S ...
- JVM性能优化, Part 3 垃圾回收
ImportNew注:本文是JVM性能优化 系列-第3篇-<JVM性能优化, Part 3 —— 垃圾回收> 第一篇 <JVM性能优化, Part 1 ―― JVM简介 > 第 ...
- Java中byte转换int时与0xff进行与运算的原因
http://w.baike.com/LGAdcWgJBBQxRAHUf.html 转帖 java中byte转换int时为何与0xff进行与运算 在剖析该问题前请看如下代码 public static ...
- Python基础(2)_数字和字符串类型
一.数据类型 1.数字 整型 Python的整型相当于C中的long型,Python中的整数可以用十进制,八进制,十六进制表示. >>> --------->默认十进制 > ...
- Yii2 如何实现表单事件之 Ajax 提交
前言 Yii2 现在使用 JS 都必须要注册代码了. 要实现 Ajax 提交,有两种方法.一是直接在 ActiveForm 调用 beforeSubmit 参数,但是个人认为这样没有很好的把 JS 和 ...