Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (NM+1)st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customer[i] will take T[i] minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 customers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer~1~ is served at window~1~ while customer~2~ is served at window~2~. Customer~3~ will wait in front of window~1~ and customer~4~ will wait in front of window~2~. Customer~5~ will wait behind the yellow line.

At 08:01, customer~1~ is done and customer~5~ enters the line in front of window~1~ since that line seems shorter now. Customer~2~ will leave at 08:02, customer~4~ at 08:06, customer~3~ at 08:07, and finally customer~5~ at 08:10.

Input

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (<=20, number of windows), M (<=10, the maximum capacity of each line inside the yellow line), K (<=1000, number of customers), and Q (<=1000, number of customer queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output "Sorry" instead.

Sample Input

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7

Sample Output

08:07
08:06
08:10
17:00
Sorry
优先队列。首先前n*m个人可以被直接容纳,紧接着就要看哪个队的第一个人先完成,那么这一队就空出一个位置,然后,就可以再插一个人,那么这一队原来的第二人就变成了本队的第一人,依次下去,每次都要知道所有队的第一人谁先办理完业务,所以用到优先队列。
代码:
#include <bits/stdc++.h>

using namespace std;
int n,m,k,q;
int qq;
int s[],r[];///s记录每一队最后一人办完的时间总数,方便之后新插入人的时间总数 r记录第一人办完的时间总数,方便知道是否有空可以插人
int c[],need[];///c记录每个人办理结束的总的时间,need记录从开始办理到结束办理花费的时间,只要 开始办理的时间在17点之前就可以
typedef pair<int,int> P;
void print(int t)
{
if(c[t] - need[t] >= )puts("Sorry");
else printf("%02d:%02d\n", + c[t] / ,c[t] % );
}
int main()
{
scanf("%d%d%d%d",&n,&m,&k,&q);
queue<int> que[];
priority_queue<P,vector<P>,greater<P> > pq;
for(int i = ;i < min(k,n * m);i ++)
{
scanf("%d",&need[i]);
que[i % n].push(need[i]);
c[i] = (s[i % n] += need[i]);
if(i >= n * (m - ))
{
pq.push(P(que[i % n].front(),i % n));
que[i % n].pop();
}
}
for(int i = ;i + n * m < k;i ++)
{
scanf("%d",&need[i + n * m]);
int present = pq.top().second,time = pq.top().first;
pq.pop();
que[present].push(need[i + n * m]);
s[present] += need[i + n * m];
c[i + n * m] = s[present];
time += que[present].front();
que[present].pop();
pq.push(P(time,present));
}
for(int i = ;i < q;i ++)
{
scanf("%d",&qq);
print(qq - );
}
}

1014 Waiting in Line (30)(30 分)的更多相关文章

  1. PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)

    1014 Waiting in Line (30 分)   Suppose a bank has N windows open for service. There is a yellow line ...

  2. 1014 Waiting in Line (30分)

    1014 Waiting in Line (30分)   Suppose a bank has N windows open for service. There is a yellow line i ...

  3. PAT 1014 Waiting in Line (模拟)

    1014. Waiting in Line (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Suppo ...

  4. PAT甲级1014. Waiting in Line

    PAT甲级1014. Waiting in Line 题意: 假设银行有N个窗口可以开放服务.窗前有一条黄线,将等候区分为两部分.客户要排队的规则是: 每个窗口前面的黄线内的空间足以包含与M个客户的一 ...

  5. PTA (Advanced Level) 1014 Waiting in Line

    Waiting in Line Suppose a bank has N windows open for service. There is a yellow line in front of th ...

  6. 1014 Waiting in Line (30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  7. PTA 1014 Waiting in Line (30分) 解题思路及满分代码

    题目 Suppose a bank has N windows open for service. There is a yellow line in front of the windows whi ...

  8. PAT 1014 Waiting in Line (30分) 一个简单的思路

    这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...

  9. 【PAT甲级】1014 Waiting in Line (30 分)(队列维护)

    题面: 输入四个正整数N,M,K,Q(N<=20,M<=10,K,Q<=1000),N为银行窗口数量,M为黄线内最大人数,K为需要服务的人数,Q为查询次数.输入K个正整数,分别代表每 ...

随机推荐

  1. 【POJ-2524】Ubiquitous Religions(并查集)

    并查集. #include<cstdio> #include<cstring> using namespace std; const int maxn = 55555; int ...

  2. 【BZOJ4804】欧拉心算 莫比乌斯反演+线性筛

    [BZOJ4804]欧拉心算 Description 给出一个数字N Input 第一行为一个正整数T,表示数据组数. 接下来T行为询问,每行包含一个正整数N. T<=5000,N<=10 ...

  3. 爬虫入门【6】Selenium用法简介

    Selenium 是什么? 一句话,自动化测试工具.它支持各种浏览器,包括 Chrome,Safari,Firefox 等主流界面式浏览器. 如果你在这些浏览器里面安装一个 Selenium 的插件, ...

  4. 九度OJ 1196:成绩排序 (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:4339 解决:1476 题目描述: 用一维数组存储学号和成绩,然后,按成绩排序输出. 输入: 输入第一行包括一个整数N(1<=N< ...

  5. 像使用linux一样使用mac

    1 不能像使用windows一样使用mac 因为mac卸载不方便. 2 gcc的问题 就使用系统默认的gcc,即clang,要想使用原声的gcc是不行的,mac本身不支持.

  6. 算法调参 weight_ratio, weight_seqratio

    from openpyxl import Workbook import xlrd import time import Levenshtein as Le target_city_list = [' ...

  7. 洛谷 P3674 小清新人渣的本愿

    想看题目的戳我. 我刚开始觉得这道题目好难. 直到我从Awson大佬那儿了解到有一个叫做bitset的STL,这道题目就很容易被解开了. 想知道这个神奇的bitset的戳我. 这个题目一看就感觉是莫队 ...

  8. threading.local的作用?

    threading.local()这个方法的特点用来保存一个全局变量,但是这个全局变量只有在当前线程才能访问,如果你在开发多线程应用的时候  需要每个线程保存一个单独的数据供当前线程操作,可以考虑使用 ...

  9. MediaRecorder实现微信、QQ、人人、易信等语音录制功能工具:MediaUtilAPI

    本文介绍使用MediaRecorder进行录制音频.录制视频学习,熟悉MediaRecorder执行流程,通过简单的Demo结合解释运行效果,最后封装MediaRecorder的API工具,实现常见比 ...

  10. spring AOP理解和相关术语

    一.AOP理解 AOP:横向抽取机制,底层使用代理方式实现. 示例: 现有LogDAO接口以及实现Log接口的Log类.类有add的方法,现在要打印add方法的开始时间和结束时间.(即增强Log的ad ...