MLP 64,2  preprocessing.MinMaxScaler().fit(X)
                               test confusion_matrix:
[[129293   2734]
 [   958  23375]]
             precision    recall  f1-score   support

0       0.99      0.98      0.99    132027
          1       0.90      0.96      0.93     24333

avg / total       0.98      0.98      0.98    156360

all confusion_matrix:
[[646945  13384]
 [  4455 117015]]
             precision    recall  f1-score   support

0       0.99      0.98      0.99    660329
          1       0.90      0.96      0.93    121470

avg / total       0.98      0.98      0.98    781799

black verify confusion_matrix:
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0
 0 0 0 0 0]
/root/anaconda2/lib/python2.7/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.
  'recall', 'true', average, warn_for)
             precision    recall  f1-score   support

0       0.00      0.00      0.00         0
          1       1.00      0.07      0.13        42

avg / total       1.00      0.07      0.13        42

white verify confusion_matrix:
[1 1 1 1 1 1 0]
             precision    recall  f1-score   support

0       1.00      0.14      0.25         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.14      0.25         7

unknown_verify:
[1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1 1 1 1
 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 0 0]

MLP 64,2 使用preprocessing.StandardScaler().fit(X)
 [[131850    180]
 [   230  24100]]
             precision    recall  f1-score   support

0       1.00      1.00      1.00    132030
          1       0.99      0.99      0.99     24330

avg / total       1.00      1.00      1.00    156360

all confusion_matrix:
[[659500    829]
 [  1195 120275]]
             precision    recall  f1-score   support

0       1.00      1.00      1.00    660329
          1       0.99      0.99      0.99    121470

avg / total       1.00      1.00      1.00    781799

black verify confusion_matrix:
[0 1 1 0 0 0 0 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1
 0 0 0 1 1]
/root/anaconda2/lib/python2.7/site-packages/sklearn/metrics/classification.py:1137: UndefinedMetricWarning: Recall and F-score are ill-defined and being set to 0.0 in labels with no true samples.
  'recall', 'true', average, warn_for)
             precision    recall  f1-score   support

0       0.00      0.00      0.00         0
          1       1.00      0.62      0.76        42

avg / total       1.00      0.62      0.76        42

white verify confusion_matrix:
[0 0 1 0 1 1 0]
             precision    recall  f1-score   support

0       1.00      0.57      0.73         7
          1       0.00      0.00      0.00         0

avg / total       1.00      0.57      0.73         7

unknown_verify:
[1 0 0 0 1 0 1 1 0 0 1 0 1 1 0 1 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 1 0 0
 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0]

代码:

    from sklearn import preprocessing
scaler = preprocessing.StandardScaler().fit(X)
#scaler = preprocessing.MinMaxScaler().fit(X)
X = scaler.transform(X)
print("standard X sample:", X[:3]) black_verify = scaler.transform(black_verify)
print(black_verify) white_verify = scaler.transform(white_verify)
print(white_verify) unknown_verify = scaler.transform(unknown_verify)
print(unknown_verify) # ValueError: operands could not be broadcast together with shapes (756140,75) (42,75) (756140,75)
for i in range(20):
X = np.concatenate((X, black_verify))
y += black_verify_labels labels = ['white', 'CC']
if True:
# pdb.set_trace()
ratio_of_train = 0.8
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=(1 - ratio_of_train))
# X_train=preprocessing.normalize(X_train)
# X_test=preprocessing.normalize(X_test)
clf = MLPClassifier(solver='sgd', batch_size=128, learning_rate='adaptive', max_iter=256,
hidden_layer_sizes=(64, 2), random_state=1) """
clf = sklearn.ensemble.RandomForestClassifier(n_estimators=n_estimators, verbose=verbose, n_jobs=n_jobs,
random_state=random_state, oob_score=True)
""" clf.fit(X_train, y_train)
print "test confusion_matrix:"
# print clf.feature_importances_
y_pred = clf.predict(X_test)
print(sklearn.metrics.confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred))
else:
#clf = pickle.loads(open("mpl-acc97-recall98.pkl", 'rb').read())
clf = pickle.loads(open("mlp-add-topx10.model", 'rb').read())
y_pred = clf.predict(X)
print(sklearn.metrics.confusion_matrix(y, y_pred))
print(classification_report(y, y_pred))
import sys
#sys.exit(0) print "all confusion_matrix:"
y_pred = clf.predict(X)
print(sklearn.metrics.confusion_matrix(y, y_pred))
print(classification_report(y, y_pred))

python MLP 神经网络使用 MinMaxScaler 没有 StandardScaler效果好的更多相关文章

  1. "多层感知器"--MLP神经网络算法

    提到人工智能(Artificial Intelligence,AI),大家都不会陌生,在现今行业领起风潮,各行各业无不趋之若鹜,作为技术使用者,到底什么是AI,我们要有自己的理解. 目前,在人工智能中 ...

  2. MLP神经网络实例--手写识别

    1.导入MNIST数据集 直接使用fetch_mldata会报错,错误信息是python3.7把fetch_mldata方法移除了,所以需要单独下载数据集从这个网站上下载数据集: https://gi ...

  3. c++实现mlp神经网络

    之前一直用theano训练样本,最近需要转成c或c++实现.在网上参考了一下其它代码,还是喜欢c++.但是看了几份cpp代码之后,发现都多少有些bug,很不爽.由于本人编码能力较弱,还花了不少时间改正 ...

  4. 深度学习与计算机视觉:基于Python的神经网络的实现

    在前面两篇文章介绍了深度学习的一些基本概念,本文则使用Python实现一个简单的深度神经网络,并使用MNIST数据库进行测试. 神经网络的实现,包括以下内容: 神经网络权值的初始化 正向传播 误差评估 ...

  5. python视频 神经网络 Tensorflow

    python视频 神经网络 Tensorflow 模块 视频教程 (带源码) 所属网站分类: 资源下载 > python视频教程 作者:smile 链接:http://www.pythonhei ...

  6. python 实现神经网络算法

    注: Scratch是一款由麻省理工学院(MIT) 设计开发的一款面向少年的简易编程工具.这里写链接内容         本文翻译自“IMPLEMENTING A NEURAL NETWORK FRO ...

  7. 使用python制作神经网络——搭建框架

    一.神经网络的大体结构可分为三个函数,分别如下: 1.初始化函数 设定输入层节点,隐藏层节点和输出层节点的数量. 2.训练 学习给定训练集样本后,优化权重. 3.查询 给定输入,从输出节点给出答案 所 ...

  8. python keras 神经网络框架 的使用以及实例

    先吐槽一下这个基于theano的keras有多难装,反正我是在windows下折腾到不行(需要64bit,vs c++2015),所以自己装了一个双系统.这才感到linux系统的强大之初,难怪大公司都 ...

  9. Python实现神经网络算法识别手写数字集

    最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究 ...

随机推荐

  1. 在Ubuntu下编译FFmpeg

    第一步:准备编译环境 .tar.bz2 -2245/ ./configure --enable-static--enable-shared--prefix=/usr/localmakesudomake ...

  2. 如何搭建maven项目和搭建ssm框架

    1.基本概念 1.1.Spring Spring是一个开源框架,Spring是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One ...

  3. Intellij idea 切换SVN路径

    一直不懂如何切换路径,每次都是删除---->检出:本地源码都不能保存下来,非常麻烦 //在idea中svn切换到新分支:[vcs] -> [subversion] -> [updat ...

  4. 批处理--执行sql(mysql数据库)

    @echo off rem test.sql文件 for %%i in (test.sql) do ( echo excute %%i mysql -u用户名 -p密码 -D数据库名 < %%i ...

  5. php配置opcache

    官网地址:http://php.net/opcache 使用下列推荐设置来获得较好的 性能: opcache.memory_consumption=128 opcache.interned_strin ...

  6. MySQL常见问题和命令

    问题: 1.centos MySQL启动失败:关闭selinux, vi /etc/selinux/config, 设置SELINUX=disabled,重启电脑: 命令: 停止.启动mysql服务器 ...

  7. php在web端播放amr语音(如微信语音)

    在使用微信JSSDK的上传下载语音接口时,发现一个问题: 下载的语音在iPhone上不能播放,测试了之后原因竟然是: 微信接口返回的音频内容是amr格式的,但iPhone不支持播放此类型格式. 那么转 ...

  8. 执行后台任务的利器——Hangfire

    Hangfire是一个开源且商业免费使用的工具函数库.可以让你非常容易地在ASP.NET应用(也可以不在ASP.NET应用)中执行多种类型的后台任务,而无需自行定制开发和管理基于Windows Ser ...

  9. 20179209《Linux内核原理与分析》第十二周作

    缓冲区溢出漏洞实验 缓冲区溢出简介 缓冲区溢出是指程序试图向缓冲区写入超出预分配固定长度数据的情况.这一漏洞可以被恶意用户利用来改变程序的流控制,甚至执行代码的任意片段.这一漏洞的出现是由于数据缓冲器 ...

  10. 洛谷 P2051 [SDOI2009]学校食堂

    传送门- 题目分析:首先,我们先看看做菜时间的运算机制.$(A~\texttt{or}~B)-(A~\texttt{and}~B)$这个试子看起来有点复杂(因为我太菜了),仔细想想,是不是可以转化为$ ...