Aeroplane chess

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5230    Accepted Submission(s):
3290

Problem Description

Hzz loves aeroplane chess very much. The chess map
contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he
throws a dice(a dice have six faces with equal probability to face up and the
numbers on the faces are 1,2,3,4,5,6). When Hzz is at grid i and the dice number
is x, he will moves to grid i+x. Hzz finishes the game when i+x is equal to or
greater than N.

There are also M flight lines on the chess map. The i-th
flight line can help Hzz fly from grid Xi to Yi (0<Xi<Yi<=N) without
throwing the dice. If there is another flight line from Yi, Hzz can take the
flight line continuously. It is granted that there is no two or more flight
lines start from the same grid.

Please help Hzz calculate the expected
dice throwing times to finish the game.

 

Input

There are multiple test cases.
Each test case
contains several lines.
The first line contains two integers N(1≤N≤100000)
and M(0≤M≤1000).
Then M lines follow, each line contains two integers
Xi,Yi(1≤Xi<Yi≤N).  
The input end with N=0, M=0.
 

Output

For each test case in the input, you should output a
line indicating the expected dice throwing times. Output should be rounded to 4
digits after decimal point.
 

Sample Input

2 0
8 3
2 4
4 5
7 8
0 0
 

Sample Output

1.1667
2.3441

题意

一个1*n的网格,每次都可以以相同的概率从一个点往后跳1~6个点;另有m条路线,a->b表示从a只能直接跳到b。跳到大于等于n,后结束游戏,求结束游戏的步数期望。

分析

dp[i]表示从i点开始,到结束游戏的期望。

那么dp[n]=0,

dp[i]=(dp[j]+1)/6   j=i+1,i+2...i+6;

如果i处有飞行线,那么dp[i]=dp[f[i]]   f[i]是i点到达的点。

code

 #include<cstdio>
#include<algorithm>
#include<cstring> using namespace std; int f[]; // 记录飞行路线
double dp[]; // dp[i]表示在i位置时,距离游戏结束还要投掷次数的期望 int main() {
int n,m;
while (~scanf("%d%d",&n,&m) && n+m) {
for (int i=; i<=n+; ++i) f[i] = -,dp[i] = 0.0;
for (int a,b,i=; i<=m; ++i) {
scanf("%d%d",&a,&b);f[a] = b;
}
dp[n] = 0.0; // 在n点的期望步数是0
for (int i=n-; i>=; --i) {
if (f[i] == -) {
for (int j=; j<=; ++j)
dp[i] += (dp[i+j]+) / 6.0;
}
else dp[i] = dp[f[i]];
}
printf("%.4lf\n",dp[]);
}
return ;
}

HDU 4405 Aeroplane chess(期望dp)的更多相关文章

  1. HDU 4405 Aeroplane chess 期望dp

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Time Limit: 2000/1000 MS (Java/ ...

  2. [ACM] hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...

  3. HDU 4405 Aeroplane chess(概率dp,数学期望)

    题目 http://kicd.blog.163.com/blog/static/126961911200910168335852/ 根据里面的例子,就可以很简单的写出来了,虽然我现在还是不是很理解为什 ...

  4. HDU 4405 Aeroplane chess 概率DP 难度:0

    http://acm.hdu.edu.cn/showproblem.php?pid=4405 明显,有飞机的时候不需要考虑骰子,一定是乘飞机更优 设E[i]为分数为i时还需要走的步数期望,j为某个可能 ...

  5. HDU 4405 Aeroplane chess (概率DP)

    题意:你从0开始,要跳到 n 这个位置,如果当前位置是一个飞行点,那么可以跳过去,要不然就只能掷骰子,问你要掷的次数数学期望,到达或者超过n. 析:概率DP,dp[i] 表示从 i  这个位置到达 n ...

  6. hdu 4405 Aeroplane chess(简单概率dp 求期望)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  7. hdu 4405 Aeroplane chess (概率DP)

    Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. hdu 4405 Aeroplane chess(概率+dp)

    Problem Description Hzz loves aeroplane chess very much. The chess map contains N+ grids labeled to ...

  9. 【HDU4405】Aeroplane chess [期望DP]

    Aeroplane chess Time Limit: 1 Sec  Memory Limit: 32 MB[Submit][Stataus][Discuss] Description Hzz lov ...

  10. 【刷题】HDU 4405 Aeroplane chess

    Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled fr ...

随机推荐

  1. Azure进阶攻略 | 下载还是在浏览器直接打开,MIME说了算!

    多年来,从一开始的网络菜鸟发展成 Azure 云专家,想必你一定学到了很多知识.不知道在这个过程中你自己是否遇到过,或者被人问到过类似下面这样的问题: 同样是直接点击网页上提供的 .mp4 视频文件链 ...

  2. JavaScript基础:比较运算符——==与 ===;!=与!==

    var x=10, y="10", m=15 x==y;//返回true x===y;//返回false x!=y;//返回false x!==y;//返回true//同理cons ...

  3. "ssllabs" website and "testssl" website

    "https://www.ssllabs.com" could scan your server and give results about the weakness of yo ...

  4. 如何更换vim-airline的theme

    仓库位置: 点我直达 (主题以前是和airline在同个仓库的,现在独立出来了) 这些内置的这些主题,可以直接使用,方法是在 “.vimrc”文件中写 let g:airline_theme=&quo ...

  5. 笨办法学Python(十六)

    习题 16: 读写文件 如果你做了上一个练习的加分习题,你应该已经了解了各种文件相关的命令(方法/函数).你应该记住的命令如下: close – 关闭文件.跟你编辑器的 文件->保存.. 一个意 ...

  6. PDO数据库类——对query()和exec()的异常监听

    PDO异常类中,query()和exec()方法中执行失败时,默认情况下,我们是无法知道,具体执行失败的原因. 那如果我们想要监听异常的话,肿么整呢? 只要使用setAttribute()方法,即可监 ...

  7. SINAMICS S120/S120 EPOS 基本定位修改方向

    步骤 修改 P1821 (在线修改需要P10=3) 修改完成,copy ram to rom / load to PG

  8. C语言中的特殊变量

    auto: 函数中的局部变量,动态地分配存储空间,数据存储在动态存储区中,在调用该函数时系统会给它们分配存储空间,在函数调用结束时就自动释放这些存储空间. register: 为了提高效率,C语言允许 ...

  9. BSP和JSP里的UI元素ID生成逻辑

    CRM WebClient UI WebClient UI渲染出来的DOM元素的这些C#_W#格式的id是在哪行ABAP代码被生成出来的? 参考我的博客WebClient UI element ID ...

  10. select_related()函数

    Django获取数据实体的时候,返回的对象一个实体或多个实体,也就是QuerySet,它是Django专有的东西,具体的理解,它是类似Python的字典的东西,但它并不实现字典的所有方法.今天讲解的是 ...