BZOJ3693: 圆桌会议(Hall定理 线段树)
题意
Sol
好的又是神仙题。。。
我的思路:对于区间分两种情况讨论,一种是完全包含,另一种是部分包含。
第一种情况非常好判断,至于计算对于一个区间[l, r]的$\sum a[i]$就可以了,但是后两种呢?qwq。想了半天也没想出来。
看了下题解,果然还有更高端的操作!
首先这题可以看是二分图匹配,最暴力的写法是对于每个a[i],直接拆成a[i]个点,然后分别向$[l_i, r_i]$连边,最后看是否能完全匹配。
有一个专门判断这玩意儿的定理:
Hall定理:
二部图G中的两部分顶点组成的集合分别为$X, Y$, $X = \{X1, X2, X3,X4,.........,Xm\},$Y=\{y1, y2, y3, y4 ,.........,yn\},G中有一组无公共点的边,一端恰好为组成X的点的充分必要条件是:
X中的任意k个点至少与Y中的k个点相邻。(1≤k≤m)
对于此题来说,直接应用Hall定理得到的推论为:对于任意的x个人,都至少对应x条边与其相连
然而这样好像还是不好搞,考虑一步步推广
1、对于任意一个询问$[l, r], a_i$,若$a_i$满足要求,那么任意的$x <= a_i$,都满足要求。
这是显然的,因为每个$a_i$连的点都是相同的
2、对于任意的区间$[l, r]$,若他们包含的$a[i]$, $\sum a[i] <= r - l + 1$满足条件,则去掉任意的$a[i]$后,该区间仍然满足条件。
同样显然。
这样我们就把给出的问题转化为:判断对于任意$[l_j, r_i]$,是否满足条件
对所有询问按右端点排序后线段树维护
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
#include<vector>
#include<cstring>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
#define LL long long
using namespace std;
const int MAXN = * 1e6 + , mod = 1e9 + ;
inline LL read() {
char c = getchar(); LL x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
#define ls k << 1
#define rs k << 1 | 1
int T, N, M;
int mx[MAXN], f[MAXN], date[MAXN];
struct Qu {
int l, r, a;
bool operator < (const Qu &rhs) const {
return r == rhs.r ? l < rhs.l : r < rhs.r;
}
}q[MAXN];
void update(int k) {
mx[k] = max(mx[ls], mx[rs]);
}
void add(int k, int val) {
mx[k] += val, f[k] += val;
}
void pushdown(int k) {
if(f[k]) add(ls, f[k]), add(rs, f[k]), f[k] = ;
}
void IntAdd(int k, int ll, int rr, int l, int r, int val) {
if(ll <= l && r <= rr) {add(k, val); return ;}
int mid = l + r >> ;
pushdown(k);
if(ll <= mid) IntAdd(ls, ll, rr, l, mid, val);
if(rr > mid) IntAdd(rs, ll, rr, mid + , r, val);
update(k);
}
int Query(int k, int ll, int rr, int l, int r) {
if(ll <= l && r <= rr) return mx[k];
int mid = l + r >> ;
pushdown(k);
if(ll > mid) return Query(rs, ll, rr, mid + , r);
else if(rr <= mid) return Query(ls, ll, rr, l, mid);
else return max(Query(ls, ll, rr, l, mid), Query(rs, ll, rr, mid + , r));
}
main() {
T = read();
while(T--) {
memset(mx, , sizeof(mx));
memset(f, , sizeof(f));
N = read(); M = read();
int cnt = , tot = ;
LL sum = ;
for(int i = ; i <= N; i++) {
q[++cnt].l = read(), q[cnt].r = read(), q[cnt].a = read();
sum += q[cnt].a;
if(q[cnt].l > q[cnt].r) q[cnt].r += M;
else if(q[cnt].r < M) q[cnt + ] = (Qu) {q[cnt].l + M, q[cnt].r + M, q[cnt].a}, cnt++;
}
if(sum > M) {puts("No"); continue;}
for(int i = ; i <= cnt; i++) q[i].l++, q[i].r++, date[++tot] = q[i].l, date[++tot] = q[i].r;
for(int i = ; i <= * N; i++) date[++tot] = i; sort(q + , q + cnt + );
sort(date + , date + tot + );
tot = unique(date + , date + tot + ) - date - ; int cur = , flag = ;
for(int i = ; i <= cnt; i++) {
int l = q[i].l, r = q[i].r;
l = lower_bound(date + , date + tot + , l) - date;
r = lower_bound(date + , date + tot + , r) - date;
while(cur < r) cur++, IntAdd(, cur, cur, , tot, date[cur] - );
IntAdd(, , l, , tot, q[i].a);
int val = Query(, , r, , tot);
if(val > date[r]) {puts("No"); flag = ; break;}
}
if(!flag) puts("Yes"); }
return ;
}
BZOJ3693: 圆桌会议(Hall定理 线段树)的更多相关文章
- BZOJ.3693.圆桌会议(Hall定理 线段树)
题目链接 先考虑链.题目相当于求是否存在完备匹配.那么由Hall定理,对于任意一个区间[L,R],都要满足[li,ri]完全在[L,R]中的ai之和sum小于等于总位置数,即R-L+1.(其实用不到H ...
- [BZOJ3693]圆桌会议[霍尔定理+线段树]
题意 题目链接 分析 又是一个二分图匹配的问题,考虑霍尔定理. 根据套路我们知道只需要检查 "区间的并是一段连续的区间" 这些子集. 首先将环倍长.考虑枚举答案的区间并的右端点 \ ...
- LOJ.6062.[2017山东一轮集训]Pair(Hall定理 线段树)
题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i ...
- loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当 ...
- 模拟赛 怨灵退治 题解(Hall定理+线段树)
题意: 有 n 群怨灵排成一排,燐每秒钟会选择一段区间,消灭至多 k 只怨灵. 如果怨灵数量不足 k,则会消灭尽量多的怨灵. 燐作为一只有特点的猫,它选择的区间是不会相互包含的.它想要知道它每秒最多能 ...
- Codeforces 338E - Optimize!(Hall 定理+线段树)
题面传送门 首先 \(b_i\) 的顺序肯定不会影响匹配,故我们可以直接将 \(b\) 数组从小到大排个序. 我们考虑分析一下什么样的长度为 \(m\) 的数组 \(a_1,a_2,\dots,a_m ...
- 【BZOJ2138】stone Hall定理+线段树
[BZOJ2138]stone Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子.每1分钟,Nan会 ...
- BZOJ1135 LYZ(POI2009) Hall定理+线段树
做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...
- ARC076 F Exhausted? Hall定理 + 线段树扫描线
---题面--- 题目大意: 有n个人,m个座位,每个人可以匹配的座位是[1, li] || [ri, m],可能有人不需要匹配座位(默认满足),问最少有多少人不能被满足. 题解: 首先可以看出这是一 ...
随机推荐
- [51nod1270] 数组的最大代价(简单dp)
解题关键:先由贪心的思想得出任何一个位置只能取1或者a[i],然后dp即可. #include<bits/stdc++.h> using namespace std; typedef lo ...
- Ubuntu Linux 使用桂电校园网 上网
2016年9月1日 星期四 桂电校园网今天升级新的出校器,旧的出校器已经不能使用,所以本篇博客已经过期,下面的方法已经不能让Ubuntu使用桂电校园网上外网了.详细的原因,请到这个网站查看:校园网计费 ...
- Window Live Writer在Win7下安装提示错误“OnCatalogResult:0x80190194”
1.在C:\Users\All Users\Microsoft\WLSetup\Logs下(All Users默认是隐藏文件夹),有两个Window Live的安装日记记录文件,打开第一个找到ERRO ...
- 测试merge效率
测试说明: MERGE是oracle提供的一种特殊的sql语法,非常适用于数据同步场景,即: (把A表数据插到B表,如果B表存在相同主键的记录则使用A表数据对B表进行更新) 数据同步的常规做法是先尝试 ...
- Collectd+InfluxDB+Grafana监控系统搭建
环境配置 节点 配置 类型 操作系统 Sched 2G 2CPU 50GB ens3=>192.168.200.11 KVM虚拟机 CentOS 7 Nova 4G 2CPU 50GB ens3 ...
- OpenStack基础知识-单元测试工具介绍
针对以前学的内容的一个简单整理 1.单元测试工具介绍 unittest: 是 Python 的标准库,提供了最基本的单元测试功能,包括 单元测试运行器(简称runner) 和 单元测试框架.项目的单元 ...
- (PHP)redis Zset(有序集合 sorted set)操作
/** * * Zset操作 * sorted set操作 * 有序集合 * sorted set 它在set的基础上增加了一个顺序属性,这一属性在修改添加元素的时候可以指定,每次指定后,zset会自 ...
- Linux查看系统位数
查看linux是多少位的几位方法 方法/步骤 方法一:getconf LONG_BIT 在linux终端输入getconf LONG_BIT命令 如果是32位机器,则结果为32 Linux ...
- 洛谷P1033 自由落体
P1033 自由落体 题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公 ...
- 如何在app里利用js调取手机第三方地图--以高德地图和百度地图为例(2)
接着上篇文章说一下js调取第三方地图的问题,上次的方式是通过一个链接直接接到了第三方的web页面,又从第三方的web页面调用的第三方app;结果,这个方法被否定了,因为需求不是这样,需求直接就想调用第 ...