【Regularization】林轩田机器学习基石
正则化的提出,是因为要解决overfitting的问题。
以Linear Regression为例:低次多项式拟合的效果可能会好于高次多项式拟合的效果。

这里回顾上上节nonlinear transform的课件:


上面的内容说的是,多项式拟合这种的假设空间,是nested hypothesis;因此,能否想到用step back的方法(即,加一些constraints的方法把模型给退化回去呢?)

事实上,是可以通过加入constraint使得模型退化回去的;但是,再优化的过程中涉及到了“判断每个wq等于0的”问题,这种问题有点儿类似PLA的求解过程。
类比一下,这是一个NP-hard的问题,即不好求解。那么能不能换一种方式,让求解变得容易些呢?

让求解变得容易的方法是,改变约束条件。假设空间变成了regularized hypothesis Wreg。

上述内容,是通过几何角度分析:满足约束条件的最优解,Wreg应该与梯度的负方向一样。

这样optimal solution就可以求出来了;有个别名叫岭回归。
上述的过程,主要请出了前人的智慧“拉格朗日乘子”,目的是把有约束的优化问题转化为无约束的优化问题。
上面是用几何意义想出来的最有的Wreg,下面还原到初始的目标优化函数:

这里引出来了augmented error的概念;因为Ein是square的,W'W也是正的,所以lambda也是设成是正的(由于lambda是正的,因此在优化求解的时候,可以保证W'W不能太大)。用这个方法可以对模型复杂度进行惩罚,并且把有约束的问题转化为无约束的问题。
这里的关键在于如何选取lambda

lambda越大,倾向于w越短;这种方式可以平移到很多线性模型中(只要是square error的);由于这种regularization的作用是缩短W的长度,因此也叫weight-decay regularization。
接下来,从更一般的角度讲解了regularization

正则化分三种类型
(1)特殊目标驱动正则化:比如,缩减偶次项Wq²
(2)为了平滑( 尽量少够到一些stochastic/deterministic noise ):例如 L1 regularizer
(3)易于优化:如L2 regularizer
感觉这里对L1 L2 regularizer讲解的比较弱,搜了一篇日志(http://blog.csdn.net/zouxy09/article/details/24971995),对L1和L2 regularizer讲解的不错。
【Regularization】林轩田机器学习基石的更多相关文章
- (转载)林轩田机器学习基石课程学习笔记1 — The Learning Problem
(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can M ...
- 【The VC Dimension】林轩田机器学习基石
首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么E ...
- 【Hazard of Overfitting】林轩田机器学习基石
首先明确了什么是Overfitting 随后,用开车的例子给出了Overfitting的出现原因 出现原因有三个: (1)dvc太高,模型过于复杂(开车开太快) (2)data中噪声太大(路面太颠簸) ...
- 【 Logistic Regression 】林轩田机器学习基石
这里提出Logistic Regression的角度是Soft Binary Classification.输出限定在0~1之间,用于表示可能发生positive的概率. 具体的做法是在Linear ...
- 【Linear Regression】林轩田机器学习基石
这一节开始讲基础的Linear Regression算法. (1)Linear Regression的假设空间变成了实数域 (2)Linear Regression的目标是找到使得残差更小的分割线(超 ...
- 【Theory of Generalization】林轩田机器学习基石
紧接上一讲的Break Point of H.有一个非常intuition的结论,如果break point在k取到了,那么k+1, k+2,... 都是break point. 那么除此之外,我们还 ...
- 【Training versus Testing】林轩田机器学习基石
接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够 ...
- 【Feasibility of Learning】林轩田机器学习基石
这一节的核心内容在于如何由hoeffding不等式 关联到机器学习的可行性. 这个PAC很形象又准确,描述了“当前的可能性大概是正确的”,即某个概率的上届. hoeffding在机器学习上的关联就是: ...
- 【Perceptron Learning Algorithm】林轩田机器学习基石
直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:fea ...
随机推荐
- April 25 2017 Week 17 Tuesday
Have you ever known the theory of chocie? There are a bunch of axiems, but there are only two thing ...
- April 5 2017 Week 14 Wednesday
Today is a perfect day to start living your dream. 实现梦想,莫如当下. Miracles may happen every day. If you ...
- Xcode SDK模拟器安装及安装路径
将SDK想要装的版本,将SDK包放入‘mac中的SDK安装路径’.再将Xcode模拟器重启. 再打开Xcode模拟器,就可以在菜单栏的 ‘硬件’->’设备‘->’iPhone Retina ...
- 使用selenium grid与BrowserMobProxyServer联合使用
背景:项目主要是做埋点数据,要使用 BrowserMobProxyServer,它相当于做一个代理,在你访问一个网页时,通过代理,获取打开网页的数据,对比你需要对比数据,所以这个工具提供获取页面请求的 ...
- JAVA对list集合进行排序Collections.sort()
对一个集合中的对象进行排序,根据对象的某个指标的大小进行升序或降序排序.代码如下: // 进行降序排列 Collections.sort(list, new Comparator<ResultT ...
- ARM是CPU体系结构
https://zhidao.baidu.com/question/680620766286548532.html ARM是一种使用精简指令(RISC)的CPU,有别于英特尔的复杂指令(CISC) x ...
- shell脚本监控URL并自动发邮件
1.安装sendmail:yum install -y sendmail 2.安装mail:yum install -y mail 3.安装mutt:yum install -y mutt 4.启动s ...
- Veritas NetBackup™ 状态码"十大"常见报错状态码
我在刚开始学习Netbackup的时候,没少走弯路.经常会遇到各种稀奇古怪的 error 信息,遇到报错会很慌张,急需一个解决问题的办法.跟无头苍蝇一样,会不加思索地把错误粘到百度上,希望赶紧查找一下 ...
- H3C S2100配置管理vlan与交换机管理IP
管理 VLAN 简介:S2100系列以太网交换机任何时刻只能有一个VLAN对应的VLAN接口可以配置IP地址,该 VLAN 即为管理 VLAN.如果要对以太网交换机进行远程管理,必须配置交换机管理 V ...
- Javascript与C#中使用正则表达式
JavaScript RegExp 对象 新建一个RegExp对象 new RegExp(pattern,[attributes]) 注: \d需要使用[0-9]来代替 参数 参数 ...