P4177 [CEOI2008]order 最小割
\(\color{#0066ff}{ 题目描述 }\)
有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。 现在给出这些参数,求最大利润
\(\color{#0066ff}{输入格式}\)
第一行给出 N,M(1<=N<=1200,1<=M<=1200) 下面将有N组数据。
每组数据第一行给出完成这个任务能赚到的钱(其在[1,5000])及有多少道工序
接下来若干行每行两个数,分别描述完成工序所需要的机器编号及租用它的费用(其在[1,20000]) 最后M行,每行给出购买机器的费用(其在[1,20000])
\(\color{#0066ff}{输出格式}\)
最大利润
\(\color{#0066ff}{输入样例}\)
2 3
100 2
1 30
2 20
100 2
1 40
3 80
50
80
110
\(\color{#0066ff}{输出样例}\)
50
\(\color{#0066ff}{数据范围与提示}\)
none
\(\color{#0066ff}{ 题解 }\)
显然每个工作不是必须要选的,根据数据范围,显然是网络流
利润=总收益-成本,显然要最小割
目前有三个值,收益,租费,购买费
S到每个工作连收益的边
每个工作向需要机器连租费的边
每个机器向T连购买费的边
这样租金只会对当前工作有影响,而收益和购买费会对全局有影响
这样求出最小割,用总收益一减即可
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
const int maxn = 1e5 + 10;
const int inf = 0x7fffffff;
struct node {
int to, dis;
node *nxt, *rev;
node(int to = 0, int dis = 0, node *nxt = NULL): to(to), dis(dis), nxt(nxt) { rev = NULL; }
void *operator new(size_t) {
static node *S = NULL, *T = NULL;
return (S == T) && (T = (S = new node[1024]) + 1024), S++;
}
};
node *head[maxn], *cur[maxn];
int dep[maxn], n, m, s, t;
void add(int from, int to, int dis) {
head[from] = new node(to, dis, head[from]);
}
void link(int from, int to, int dis) {
add(from, to, dis);
add(to, from, 0);
head[from]->rev = head[to];
head[to]->rev = head[from];
}
bool bfs() {
for(int i = s; i <= t; i++) dep[i] = 0, cur[i] = head[i];
std::queue<int> q;
q.push(s);
dep[s] = 1;
while(!q.empty()) {
int tp = q.front(); q.pop();
for(node *i = head[tp]; i; i = i->nxt)
if(!dep[i->to] && i->dis)
dep[i->to] = dep[tp] + 1, q.push(i->to);
}
return dep[t];
}
int dfs(int x, int change) {
if(x == t || !change) return change;
int flow = 0, ls;
for(node *i = cur[x]; i; i = i->nxt) {
cur[x] = i;
if(dep[i->to] == dep[x] + 1 && (ls = dfs(i->to, std::min(i->dis, change)))) {
change -= ls;
flow += ls;
i->dis -= ls;
i->rev->dis += ls;
if(!change) break;
}
}
return flow;
}
int dinic() {
int flow = 0;
while(bfs()) flow += dfs(s, inf);
return flow;
}
int main() {
int ans = 0;
n = in(), m = in();
s = 0, t = n + m + 1;
for(int i = 1; i <= n; i++) {
int r = in();
ans += r;
link(s, i, r);
for(int T = in(); T --> 0;) {
int id = in(), v = in();
link(i, n + id, v);
}
}
for(int i = 1; i <= m; i++) link(n + i, t, in());
printf("%d\n", ans - dinic());
return 0;
}
P4177 [CEOI2008]order 最小割的更多相关文章
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- [CEOI2008]order --- 最小割
[CEOI2008]order 题目描述: 有N个任务,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数, ...
- P4177 [CEOI2008]order(网络流)最大权闭合子图
P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...
- 【BZOJ-1391】order 最小割 + 最大全闭合图
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1334 Solved: 405[Submit][Statu ...
- P4177 [CEOI2008]order
传送门 答案等于总工作价值减去最小失去的价值 考虑构建最小割模型 在 $S$割 的点表示选,在 $T$割 的点表示不选 对于机器(编号从 $n+1$ 到 $n+m$) $n+i$,连边 $(n+i,T ...
- P4177 [CEOI2008]order 网络流,最小割,最大权闭合子图
题目链接 \(Click\) \(Here\) 如果没有租用机器就是一个裸的最大权闭合子图.现在有了租用机器应该怎么办呢? 单独拆点是不行的,因为会和直接买下的情况脱离关系,租借是和连边直接相关的,那 ...
- 洛谷$P4177\ [CEOI2008]\ order$ 网络流
正解:网络流 解题报告: 传送门$QwQ$ 开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,, 按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个 ...
- bzoj 1391 [Ceoi2008]order(最小割)
[题意] 有n个有偿工作选做,m个机器,完成一个工作需要若干个工序,完成每个工序需要一个机器,对于一个机器,在不同的工序有不同的租费,但买下来的费用只有一个.问最大获益. [思路] 对于工作和机器建点 ...
- 【bzoj1391】[Ceoi2008]order 网络流最小割
原文地址:http://www.cnblogs.com/GXZlegend/p/6796937.html 题目描述 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序 ...
随机推荐
- Android开发国际化
安卓中,国际化十分简单. 其实就是文件夹的问题.一般我们分两种情况. 一是app根据系统语言调用对应的资源文件夹,二是在app里面根据用户的需求来更改语言.前者比较简单,只需求创建对应国家的strin ...
- sea.js的模块化开发
为什么使用sea.js? Sea.js 追求简单.自然的代码书写和组织方式,具有以下核心特性: 简单友好的模块定义规范:Sea.js 遵循 CMD 规范,可以像Node.js 一般书写模块代码. 自然 ...
- fragment界面交互实操(步骤)
首先,新建一个继承了fragment类的类,在oncreateview方法中,使用方法的参数inflater,用其inflater.inflate(R.layout.fragment1,contain ...
- 第5章 选举模式和ZooKeeper的集群安装 5-1 集群的一些基本概念
xx就是我们的master,也就是我们的主节点.心跳机制,当有一个节点挂掉之后,整个集群还是可以工作的.选举模式,我们现在的master是正常运行的,但是在某些情况下它宕机了死机了,那么这个时候它这个 ...
- GNU Gettext
一.简介 当前,无论是商业还是免费软件都是英文的,并用英文做为文档.直到现在,为使其它非英语语言用户也能够进行交互所做的工作仍然不足,所以这对非英语语言的国家很不利.然而,随着GNU gettext工 ...
- ZROI2018提高day6t1
传送门 分析 我们发现这个四元组可以分解成一个逆序对拼上一个顺序对,这个线段树搞搞然后乘一下就可以求出来了,但是我们发现可能有(a,b)为逆序对且(b,c)为顺序对的情况,所以要进行容斥,我们只需要枚 ...
- python3-函数的参数的四种简单用法:
def print_two(*args): arg1, arg2 = args print "arg1: %r, arg2: %r" % (arg1,arg2) ...
- hadoop运行故障问题解决1——datanode节点启动后自动关闭
ERROR org.apache.hadoop.hdfs.server.datanode.DataNode: java.io.IOException: Incompatible namespaceID ...
- 数据结构_Search
问题描述 可怜的 Bibi 刚刚回到家,就发现自己的手机丢了,现在他决定回头去搜索自己的手机.现在我们假设 Bibi 的家位于一棵二叉树的根部.在 Bibi 的心中,每个节点都有一个权值 x,代表他心 ...
- 小小c#算法题 - 11 - 二叉树的构造及先序遍历、中序遍历、后序遍历
在上一篇文章 小小c#算法题 - 10 - 求树的深度中,用到了树的数据结构,树型结构是一类重要的非线性数据结构,树是以分支关系定义的层次结构,是n(n>=0)个结点的有限集.但在那篇文章中,只 ...