题目描述 Description

如果一个自然数n满足:所有小于它的自然数的约数个数都小于n的约数个数,则称n是一个Antiprime数。譬如:1、2、4、5、12、24都是Antiprime数。

 输入输出格式 Input/output
输入格式:
输入文件中只有一个整数n(1≤n≤2 000 000 000)。
输出格式:
输出文件中也只包含一个整数,即不大于n的最大Antiprime数。
 输入输出样例 Sample input/output
样例测试点#1

输入样例:

1000
输出样例:

840

思路:

  这个问题可以转化为求n以内约数最多的数,对于一个n,如果它的质因子越小,那么它能分解的因子个数也就越多,而对于有相同因子数的两个数,较小的那个更具有更新的空间,所以当两个数有相同因子数时,我们取较小一个。

  根据唯一分解定理,任何一个大于1的数都可以分解为许多质数的乘积,并且根据质因数的个数可以算出约数的个数,公式为:n=P1x+P2y+P3z+P,这个n的约数个数为(x+1)(y+1)(z+1)(…+1),那么这题,我们可以从1,从小到大循环,每次分解这个数为质因数,最终找到约数最多的数(约数相同取较少的,因为假如取较大的那个,因为较小的那个在前面,并且约数个数和较大的那个一样,这样就会出现较大的数不满足Antiprime数定义,所以我们取较小的数,这样前面就不会有数来和它冲突),输出即可。

  但这样会超时,我们不妨做一下优化,逆用唯一分解定理,从小到大枚举每个质因数的使用个数(由数据范围限定最多枚举到23),搜索答案。

  记住一定要用long long。

代码如下:

 #include<cstdio>
#include<cmath>
long long n,maxx,num[]={,,,,,,,,,,},ans;
void findd(long long now,long long tot,long long u,long long v)//当前累计值,当前累计因数个数,上个质因数使用次数,枚举位置
{
if(maxx<tot||(tot==maxx&&ans>now))
{
maxx=tot;
ans=now;
}
if(v>=) return;
for(long long i=;i<=u;i++)
{
now*=num[v];
if(now>n) return;
findd(now,tot*(+i),i,v+);
}
}
int main()
{
scanf("%I64d",&n);
findd(,,,);
printf("%I64d\n",ans);
return ;
}

Antiprime数-数论的更多相关文章

  1. [swustoj 373] Antiprime数

    Antiprime数(0373) 问题描述 如果一个自然数n(n>=1),满足所有小于n的自然数(>=1)的约数个数都小于n的约数个数,则n是一个Antiprime数.譬如:1, 2, 4 ...

  2. COGS 693. [SDOI2005]Antiprime数 唯一分解定理逆用

    693. Antiprime数 ★★   输入文件:antip.in   输出文件:antip.out   简单对比 时间限制:1 s   内存限制:128 MB 如果一个自然数n(n>=1), ...

  3. 巴蜀1088 Antiprime数

    Description 如果一个自然数n(n>=1),满足所有小于n的自然数(>=1)的约数个数都小于n的约数个数,则n是一个Antiprime数.譬如:1, 2, 4, 6, 12, 2 ...

  4. Catalan数(数论)

    Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要 ...

  5. P4844 LJJ爱数数 数论

    思路: 化简后得到(a+b)c=ab,设g=(a,b),A=a/g,B=b/g,则g(A+B)c=ABg^2,即(A+B)c=ABg 由题目已知条件:(a,b,c)=1,即(g,c)=1,g|(A+B ...

  6. 洛谷 P1217 [USACO1.5]回文质数 Prime Palindromes【取回文数/数论/字符串】

    题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找出范围[a,b](5 <= a < b <= 100,000 ...

  7. 【LOJ6482】LJJ 爱数数 数论

    题目大意 给你 \(n\),求 \[ \sum_{a=1}^n\sum_{b=1}^n\sum_{c=1}^n[\frac{1}{a}+\frac{1}{b}=\frac{1}{c}][\gcd(a, ...

  8. 2018.09.09 cogs693. Antiprime数(搜索)

    传送门 看完题发现很sb. 前10个质数乘起来已经超出题目范围了. 因此只用搜索前几个质数每个的次数比较谁的因数的就行了. 代码: #include<iostream> #define l ...

  9. HDU 4565 So Easy! 广义斐波拉数 数论 (a+sqrt(b))^n%mod 模板

    So Easy! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. Advanced GET 9.1 修正汉化版(免注册、页面加载、保存都正常)

    http://www.55188.com/viewthread.php?tid=2846679 Advanced GET 9.1 修正汉化版(免注册.页面加载.保存都正常) 网上流传的很多GET9.1 ...

  2. mybatis_1

    mybatis-config.xml <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE co ...

  3. 【LeetCode】【动态规划】Generate Parentheses(括号匹配问题)

    描述 Given n pairs of parentheses, write a function to generate all combinations of well-formed parent ...

  4. python cookbook 数据结构

    保留最后n个元素: from collections import deque def search (lines, pattern, history=): previous_lines = dequ ...

  5. ubuntu下单网卡绑定多个IP

    第一种方式静态修改. 进入 /etc/network/ 目录下.修改interfaces文件. # The primary network interfaceauto eth0iface eth0 i ...

  6. Python 核心编程 课后习题 第五章

    2. 操作符. (a) 写一个函数, 计算并返回两个数的乘积. (b) 写一段代码调用这个函数, 并显示它的结果. def multi(a,b): return a * b result = mult ...

  7. 20165101刘天野 2018-2019-2《网络对抗技术》Exp8 Web基础

    20165101刘天野 2018-2019-2<网络对抗技术>Exp8 Web基础 1.实验内容 1.1 Web前端HTML (1)输入命令service apache2 start启动A ...

  8. HDU2612 -暑假集训-搜索进阶N

     http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82828#problem/N这两天总是因为一些小错误耽误时间,我希望自己可以细心点.珍惜 ...

  9. Delphi 中关闭指定进程的方法

    Uses Windows, SysUtils, Tlhelp32 ; Function KillTask( ExeFileName: String ): Integer ; //关闭进程 Functi ...

  10. Linux课程---10、权限管理(权限有哪几种)

    Linux课程---10.权限管理(权限有哪几种) 一.总结 一句话总结: r 读 w 写 x 执行 1.drwxr-x---  2 root root  4096 Jan 20 19:39 mnt ...