数学【p2117】 小z的矩阵
题目描述-->p2117 小z的矩阵
分析:
题目给定我们一个正方形.
容易想到,正方形是对称的.
推敲一下
如果我们的矩阵是这样的↓ 闭眼瞎敲出来的.
{0}&{1}&{1}&{0}&{1}\\\\
{0}&{1}&{0}&{1}&{0}\\\\
{1}&{0}&{1}&{0}&{1}\\\\
{0}&{1}&{1}&{0}&{0}\\\\
{1}&{1}&{0}&{0}&{1}\\\\
\end{bmatrix}\]
题目给定我们的计算公式为a[i][j]×a[j][i]的和。
对于这个栗子.
按照式子来的话我们这么算
a[1][1]*a[1][1]+a[1][2]*a[2][1]+a[1][3]*
a[3][1]+a[1][4]*a[4][1]+a[1][5]*a[5][1]+
a[2][1]*a[1][2]+a[2][2]*a[2][2]+.......
..............+a[5][5]*a[5][5]
虽然不是手算,但摧残一个计算机你真的忍心嘛emmm
很容易地发现(一点也不容易
a[i][j]*a[j][i]与a[j][i]*a[i][j]的值相同.
如果为1,那么他们加和就是2,%2就变成0.
如果为0,那么他们加和依旧为0,%2依旧为0.
对答案没有贡献!
但是
在我们的对角线上的元素是对答案的贡献是它的平方.
因此我们需要记录对角线上的元素对答案的贡献.
即 除了对角线上的元素,其他位置都没有贡献.
因此我们可以只记录对角线上的元素的答案.
对于翻转操作,我们很容易发现
每一行每一列均对应地控制一个对角线上的元素.
如何统计我们的答案?
按照上面的例子来看,那答案就是1.
如果翻转的话,我们会改变某一位置上的元素的值.
即0->1,1->0
假如,我们改变地是第5行.那我们最后一个元素得到的就是0.
此时答案为0.
如果我们再去翻转其他行/列,我们得到的答案一定是1.
以此类推,我们发现,只要有翻转操作,我们的答案一定会改变.即从0->1,1->0.
所以我们可以定义变量ans,如果有翻转操作,就将它^=1
-----------------关于^操作.------------------
01=0,11=0.
观察到它的性质,我们就知道如何记录答案了!
(或者你可以!一下
关于^操作,网上有不少讲解,在这里就不展开了.
(懒
------------------代码---------------------
#include<bits/stdc++.h>
#define IL inline
#define RI register int
IL void in(int &x)
{
int f=1;x=0;char s=getchar();
while(s>'9' or s<'0'){if(s=='-')f=-1;s=getchar();}
while(s>='0' and s<='9'){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,Q,ans;
int main(void)
{
in(n);in(Q);
for(RI i=1;i<=n;i++)
for(RI j=1,c;j<=n;j++)
if(i==j)
in(c),(ans+=c)%=2;
else
in(c);//非对角线上的元素对答案没有贡献,我们只读入.
for(RI i=1,opt,x;i<=Q;i++)
{
in(opt);
if(opt==3)
printf("%d",ans);
else in(x),ans^=1;
}
}
数学【p2117】 小z的矩阵的更多相关文章
- 洛谷——P2117 小Z的矩阵
P2117 小Z的矩阵 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1,则G(A)等于所有A[i][j]*A[j][i]的和对2取余 ...
- 洛谷 P2117 小Z的矩阵
P2117 小Z的矩阵 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1,则G(A)等于所有A[i][j]*A[j][i]的和对2取余 ...
- 洛谷—— P2117 小Z的矩阵
https://www.luogu.org/problemnew/show/2117 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1 ...
- P2117 小Z的矩阵
题意: 给你一个初始01矩阵 三种操作 1.给一个x,把第x行01互换 2.给一个x,把第x列01互换 3.求$(\sum_{i=1}^n\sum_{j=1}^nf[i][j]*f[j][i])%2$ ...
- luogu P2117 小Z的矩阵(结论题)
题意 题解 这题有点水. 我们发现对答案有贡献的实际上只有左上到右下的对角线上的数. 因为不在这条对角线上的乘积都要计算两遍,然后%2就都没了... 然后就做完了. #include<iostr ...
- 【贪心】【P2117】小Z的矩阵
传送门 Description 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1, 当然询问一个矩阵的G值实在是太简单了.小Z在给出一个N*N矩 ...
- 洛谷 题解 P2117 【小Z的矩阵】
这题这么无聊,亏我还用了读入输出优化... 关键在于,这还是道黄题QWQ 掀桌而起 (╯‵□′)╯︵┻━┻ 显而易见,在i != j的情况下,a[i][j] + a[j][i]和a[j][i] + a ...
- 【BZOJ4031】小Z的房间(矩阵树定理)
[BZOJ4031]小Z的房间(矩阵树定理) 题面 BZOJ 洛谷 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子 ...
- bzoj 4031: 小Z的房间 矩阵树定理
bzoj 4031: 小Z的房间 矩阵树定理 题目: 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子是一个房间或者是一个柱子.在一开始的时 ...
随机推荐
- ADB命令总结(1)
今日继续学习ADB,使用真机来操作,因此把所用到的命令总结如下: 一,模拟按HOME键 adb shell input keyevent KEYCODE_HOME 二,滑动手机屏幕 从(x1,y1)滑 ...
- Tornado详解
1.Tornado路由系统 1.1 Tornado程序示例 新建一个tornadodemo.py, import tornado.ioloop import tornado.web user_info ...
- 3dMax,Maya与FBX
3DMax下载地址(包含安装教程与注册方法):http://www.3d66.com/popsoft_1.html 3DMax已经自带导出为fbx格式的功能,所以无需安装fbx插件 Maya下载地址( ...
- win10激活(转)
批处理命令激活方法,此方法和激活码可激活 180天 先来说下使用激活码使用方法: 1.同时按下Win键+X,然后选择命令提示符(管理员) 2.在命令提示符中依次输入: slmgr.vbs /upk ( ...
- 参加2018之江杯全球人工智能大赛
:视频识别&问答
学习了一段时间的AI,用天池大赛来检验一下自己的学习成果. 题目:参赛者需对给定的短视频进行内容识别和分析,并回答每一个视频对应的问题.细节请到阿里天池搜索. 两种思路 1 将视频截成一帧一帧的图片, ...
- shell之ip命令
转:出处我也不知道了,学习时候记下的笔记 1.作用 ip是iproute2软件包里面的一个强大的网络配置工具,它能够替代一些传统的网络管理工具,例如ifconfig.route等,使用权限为超级用户. ...
- [muku][1 初始restful api] chorme安装jsonview 插件
https://github.com/gildas-lormeau/JSONView-for-Chrome https://www.cnblogs.com/androidstudy/p
- java案例1,打印hello java
package anli1; public class hellojava { public static void main(String []args){ System.out.println(& ...
- 【现代程序设计】homework-01
HOMEWORK-01 1) 建立 GitHub 账户, 把课上做的 “最大子数组之和” 程序签入 已完成. 2) 在 cnblogs.com 建立自己的博客. 写博客介绍自己的 GitHub 账户. ...
- SOA与WCF
背景: 高校平台马上就要进入编程阶段了,对于没怎么做过正式项目的我们来说,要学的东西实在太多了.一下子面对这么多学习资料时,我们也不能着急,还是踏踏实实,一个一个地去了解,其实他们都没那么神秘.这篇博 ...