(1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK)$ in which the elementary tensor $k\otimes h^*$corresponds to the linear map that takes a vector $u$ of $\scrH$ to $\sef{h,u}k$. This linear transformation has rank one and all rank one transformations can be obtained in this way.

(2). An explicit transformation of this isomorphism $\varphi$ is outlined below. Let $e_1,\cdots,e_n$ be an orthonormal basis for $\scrH$ and for $\scrH^*$. Let $f_1,\cdots,f_m$ be an orthonormal basis of $\scrK$. Identify each element of $\scrL(\scrH,\scrK)$ with it matrix with respect to these bases. Let $E_{ij}$ be the matrix all whose entries are zero except the $(i,j)$-entry, which is $1$. Show that $\varphi(f_i\otimes e_j)=E_{ij}$ for all $1\leq i\leq m$, $1\leq j\leq n$. Thus, if $A$ is any $m\times n$ matrix with entries $a_{ij}$, then $$\bex \varphi^{-1}(A)=\sum_{i,j}a_{ij}(f_i\otimes e_j) =\sum_{i,j}(Ae_j)\otimes e_j. \eex$$

(3). the space $\scrL(\scrH,\scrK)$ is a Hilbert space with inner product $$\bex \sef{A,B}=\tr A^*B. \eex$$ The set $E_{ij}$, $1\leq i\leq m$, $1\leq j\leq n$ is an orthonormal basis for this space. Show that the map $\varphi$ is a Hilbert space isomorphism; i.e., $$\bex \sef{\varphi^{-1}(A),\varphi^{-1}(B)} =\sef{A,B},\quad\forall\ A,B. \eex$$

Solution.

(1). $$\beex \ba{rcl} \scrK\otimes \scrH^*&\to&\scrL(\scrH,\scrK)\\ k\otimes h^*&\mapsto&\sex{u\mapsto \sef{h,u}k}. \ea \eeex$$ On the other hand, if $f\in \scrL(\scrH,\scrK)$ is of rank one, then there exists some $0\neq v\in \scrK$ such that $$\bex f(u)=a_uv. \eex$$ Since $$\beex \bea a_{bu}v=f(bu)=ba_uv\ra a_{bu}=ba_u,\\ a_{u_1+u_2}v=f(u_1+u_2)=a_{u_1}v+a_{u_2}v&\ra a_{u_1+u_2}=a_{u_1}+a_{u_2}, \eea \eeex$$ we have $$\bex \scrH\ni u\mapsto a_u\in \bbC \eex$$ is linear, and thus there exists some $h\in \scrH$ such that $$\bex a_u=\sef{h,u}\ra f(u)=\sef{h,u}k. \eex$$

(2). As noticed in (1), $$\bex \varphi(f_i\otimes e_j)(e_k)=\sef{e_j,e_k}f_i=\delta_{jk}f_i, \eex$$ and thus $$\bex \varphi(f_i\otimes e_j)(e_1,\cdots,e_n) =(f_1,\cdots,f_m)E_{ij}. \eex$$

(3). $$\beex \bea \sef{A,B}&=\sum_{i,j} \bar a_{ji}b_{ji},\\ \sef{E_{ij},E_{kl}} &=\sum_{p,q}\delta_{pi}\delta_{qj}\cdot \delta_{pk}\delta_{ql}\\ &=\delta_{ik}\delta_{jl}\sum_{p,q}\delta_{pi}\delta_{qj},\\ \sef{\varphi^{-1}(A),\varphi^{-1}(B)} &=\sum_{j,k} \sef{(Ae_j)\otimes e_j,(Be_k)\otimes e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_k}\sef{e_j,e_k}\\ &=\sum_{j,k} \sef{Ae_j,Be_j}\\ &=\sum_{i,j}\bar a_{ij}b_{ij}\\ &=\sef{A,B}. \eea \eeex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. iOS 开发一年总结

    收获很多 1. 一个人包办从构思, 设计, 实现, 推广的全过程, 对自己的能力, 特别是能力范围有很大的提升. 以前在公司上班仅仅局限在实现的局域内, 现在在做自己的产品时, 在设计时的取舍, 对工 ...

  2. EXTJS 4.2 资料 控件之 xtype: "fieldcontainer",追加html

    { xtype: "fieldcontainer", layout: "hbox", items: [ { fieldLabel: '素材目录', name: ...

  3. HubbleDotNet开源全文搜索组件相关资源

    系统简介 HubbleDotNet 是一个基于.net framework 的开源免费的全文搜索数据库组件.开源协议是 Apache 2.0.HubbleDotNet提供了基于SQL的全文检索接口,使 ...

  4. 制作复选框(Toggle)

    怎样判断是否应当使用复选框 复选框,就是对一个选项做上一个标记,表示这个选项已经被选中了.在游戏中,复选框一般用来做一些选项的控制,这种选项一般都只有两种答案:是和否.例如,单击一下开启音乐的复选框, ...

  5. 常用汇编命令&&OD命令总结

    汇编32位CPU所含有的寄存器有: 4个数据寄存器(EAX.EBX.ECX和EDX)对低16位数据的存取,不会影响高16位的数据.这些低16位寄存器分别命名为:AX.BX.CX和DX,它和先前的CPU ...

  6. Hibernate 二级缓存 总结整理(转)

    和<Hibernate 关系映射 收集.总结整理> 一样,本篇文章也是我很早之前收集.总结整理的,在此也发上来 希望对大家有用.因为是很早之前写的,不当之处请指正. 1.缓存:缓存是什么, ...

  7. weak_ptr的一点认识

    近期在补充和梳理C++方面的知识的时候,遇到了WeakPtr这个概念和用法,不甚明白,Google出了一堆文字,包括Boost的shared_ptr和weak_ptr的比较,以及其他一些博客里面给的例 ...

  8. IsBadStringPtr、IsBadWritePtr

    判断调用进程是否拥有对指定字符串指针的读取权限,函数原型如下: BOOL IsBadStringPtr( LPCTSTR lpsz, UINT_PTR ucchMax); 参数: lpsz: 输入参数 ...

  9. hdu 3537 Daizhenyang's Coin 博弈论

    详见:http://www.cnblogs.com/xin-hua/p/3255985.html 约束条件6 代码如下: #include<iostream> #include<st ...

  10. photoshop:模仿-广告放射背景

    模仿对象:图片大小960*400 过程: 1.新建文档,大小为:960*800 2.选择渐变工具,黑白从上往下渐变 3.滤镜->扭曲->波浪,参考设置 4.滤镜->扭曲->极坐 ...