斐波那契(Fibonacci)数列

问题描述

递归算法:

 package chapter2shuzizhimei.fibonacci;
/**
* Fibonacci数列递归求解
* @author DELL
*
*/
public class Fibonacci1 {
public static int fibonacci(int n){
if(n<=0)
return 0;
else if(n==1)
return 1;
else
return fibonacci(n-1)+fibonacci(n-2);
}
public static void main(String[] args) {
int n = 3;
System.out.println("fibonacci("+n+") = "+fibonacci(n)); } }

我们的问题是:有没有更加优化的解法?

分析与解法

【解法一】递推关系的优化

上述递归算法中有着很多的重复计算,利用一个数组存储中间结果避免重复计算。时间复杂度为O(N),空间复杂度也为O(N)。

算法如下:

 package chapter2shuzizhimei.fibonacci;
/**
* Fibonacci数列求解
* 【解法一】递推关系的优化
* @author DELL
*
*/
public class Fibonacci2 {
private static int f[];
public Fibonacci2(int n){
f = new int[n+1];
for(int i=0;i<n;i++){
f[i]=-1;
}
}
public static int fibonacci(int n){
if(n<=0){
f[0]=0;
return 0;
}
else if(n==1){
f[1]=1;
return 1;
}
else{
if(f[n-1]==-1){
if(f[n-2]==-1)
return fibonacci(n-1)+fibonacci(n-2);
else
return fibonacci(n-1)+f[n-2];
}else{
return f[n-1]+f[n-2];
}
}
}
public static void main(String[] args) {
int n = 3;
new Fibonacci2(n);
System.out.println("fibonacci("+n+") = "+fibonacci(n)); } }

程序运行结果如下:

fibonacci(3) = 2

【解法二】采用非递归求解

算法如下:

 package chapter2shuzizhimei.fibonacci;
/**
* Fibonacci数列求解
* 【解法二】非递归
* @author DELL
*
*/
public class Fibonacci3 {
public static int fibonacci(int n){
if(n<=0)
return 0;
else if(n==1)
return 1;
else{
int f0 = 0,f1 = 1,f2 = 0;
for(int i=2;i<=n;i++){
f2 = f0 + f1;
f0 = f1;
f1 = f2;
}
return f2;
}
}
public static void main(String[] args) {
int n = 3;
System.out.println("fibonacci("+n+") = "+fibonacci(n)); } }

程序运行结果如下:

fibonacci(3) = 2

【解法三】求解通项公式

算法代码如下:

 package chapter2shuzizhimei.fibonacci;
/**
* Fibonacci数列求解
* 【解法三】求解通项公式
* @author DELL
*
*/
public class Fibonacci4 {
public static long fibonacci(int n){
double x = Math.sqrt(5);
double f = (x/5)*Math.pow((1+x)/2, n) - (x/5)*Math.pow((1-x)/2, n);
return Math.round(f);
}
public static void main(String[] args) {
int n = 3;
System.out.println("fibonacci("+n+") = "+fibonacci(n)); } }

程序运行结果如下:

fibonacci(3) = 2

【解法四】分治策略

要先导入JAMA:Java矩阵包

 package chapter2shuzizhimei.fibonacci;

 import Jama.Matrix;

 /**
* Fibonacci数列求解
* 【解法四】分治策略
* @author DELL
*
*/
public class Fibonacci5 {
//求解矩阵A的n次方
public static Matrix MatrixPow(Matrix A, int n){
int m = A.getColumnDimension();
Matrix result = new Matrix(m,m); //生成全为0的矩阵
for(int i=0;i<m;i++){ //变成单位矩阵
result.set(i, i, 1);
}
Matrix temp = A;
while(n!=0){
if((n&0x01)==1)
result = result.times(temp); //矩阵的乘法
temp = temp.times(temp);
n >>= 1;
}
return result;
}
//计算Fibonacci数列
public static long fibonacci(int n){
if(n<=0)
return 0;
else if(n==1)
return 1;
else{
Matrix A = new Matrix(2,2,1); //生成全为1的矩阵
A.set(1, 1, 0);
Matrix B = MatrixPow(A, n-1);
return (long) B.get(0, 0);
}
}
public static void main(String[] args) {
int n = 5;
System.out.println("fibonacci("+n+") = "+fibonacci(n)); } }

程序运行结果如下:

fibonacci(5) = 5

扩展问题

  假设A(0)=1,A(1)=2,A(2)=2。对于n>2,都有A(K) = A(k-1) + A(k-2) +A(k-3)。

  1. 对于任何一个给定的n,如何计算出A(n)?

  2. 对于n非常大的情况,如n=260的时候,如何计算A(n) mod M (M<100000)呢?

问题1:非递归解法,代码如下:

 package chapter2shuzizhimei.fibonacci;
/**
* 扩展问题1求解
* 非递归
* @author DELL
*
*/
public class Fibonacci6 {
public static int A(int n){
if(n<=0)
return 1;
else if(n==1||n==2)
return 2;
else{
int f0 = 1,f1 = 2,f2 = 2,f3 = 0;
for(int i=3;i<=n;i++){
f3 = f0 + f1 + f2;
f0 = f1;
f1 = f2;
f2 = f3;
}
return f3;
}
}
public static void main(String[] args) {
int n = 4;
System.out.println("A("+n+") = "+A(n)); } }

程序运行结果如下:

A(4) = 9

问题2:非递归解法,代码如下:

 package chapter2shuzizhimei.fibonacci;
/**
* 扩展问题2求解
* 非递归
* @author DELL
*
*/
public class Fibonacci7 {
//计算A(n) mod m
public static long A(long n,long m){
if(n<=0)
return 1;
else if(n==1||n==2)
return 2;
else{
long f0 = 1,f1 = 2,f2 = 2,f3 = 0;
for(int i=3;i<=n;i++){
f0 = f0%m;
f1 = f1%m;
f2 = f2%m;
f3 = f0 + f1 + f2;
f0 = f1;
f1 = f2;
f2 = f3;
}
return f3%m;
}
}
public static void main(String[] args) {
long n = (long) Math.pow(2, 10);
long m = 100;
System.out.println("A("+n+") = "+A(n,m)); } }

程序运行结果如下:

A(1024) = 97

第2章 数字之魅——斐波那契(Fibonacci)数列的更多相关文章

  1. 斐波那契(Fibonacci)数列的几种计算机解法

    题目:斐波那契数列,又称黄金分割数列(F(n+1)/F(n)的极限是1:1.618,即黄金分割率),指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.…….在数学上,斐波纳契数列以如下 ...

  2. 斐波那契(Fibonacci)数列的七种实现方法

    废话不多说,直接上代码 #include "stdio.h" #include "queue" #include "math.h" usin ...

  3. 如何用Python输出一个斐波那契Fibonacci数列

    a,b = 0, 1 while b<100: print (b), a, b = b, a+b

  4. 斐波那契 (Fibonacci)数列

    尾递归会将本次方法的结果计算出来,直接传递给下个方法.效率很快. 一般的递归,在本次方法结果还没出来的时候,就调用了下次的递归, 而程序就要将部分的结果保存在内存中,直到后面的方法结束,再返回来计算. ...

  5. ACM/ICPC 之 数论-斐波拉契●卢卡斯数列(HNNUOJ 11589)

    看到这个标题,貌似很高大上的样子= =,其实这个也是大家熟悉的东西,先给大家科普一下斐波拉契数列. 斐波拉契数列 又称黄金分割数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.34.… ...

  6. 2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci)

    2019.8.3 [HZOI]NOIP模拟测试12 A. 斐波那契(fibonacci) 全场比赛题解:https://pan.baidu.com/s/1eSAMuXk 找规律 找两个节点的lca,需 ...

  7. 递归函数练习:输出菲波拉契(Fibonacci)数列的前N项数据

    /*====================================================================== 著名的菲波拉契(Fibonacci)数列,其第一项为0 ...

  8. [洛谷P3938]:斐波那契(fibonacci)(数学)

    题目传送门 题目描述 小$C$养了一些很可爱的兔子.有一天,小$C$突然发现兔子们都是严格按照伟大的数学家斐波那契提出的模型来进行繁衍:一对兔子从出生后第二个月起,每个月刚开始的时候都会产下一对小兔子 ...

  9. HZOJ 斐波那契(fibonacci)

    先说一个规律: 如图将每个月出生的兔子的编号写出来,可以发现一只兔子在哪一列他的父亲就是谁. 每列的首项可以通过菲波那契求得. 然后你就可以像我一样通过这个规律打表每个点的父亲,预处理出倍增数组,倍增 ...

随机推荐

  1. HDU5697 刷题计划 dp+最小乘积生成树

    分析:就是不断递归寻找靠近边界的最优解 学习博客(必须先看这个): 1:http://www.cnblogs.com/autsky-jadek/p/3959446.html 2:http://blog ...

  2. Linux基本命令(1)管理文件和目录的命令

    Linux管理文件和目录的命令 命令 功能 命令 功能 pwd 显示当前目录 ls 查看目录下的内容 cd 改变所在目录 cat 显示文件的内容 grep 在文件中查找某字符 cp 复制文件 touc ...

  3. 写给Python初学者的设计模式入门

    有没有想过设计模式到底是什么?通过本文可以看到设计模式为什么这么重要,通过几个Python的示例展示为什么需要设计模式,以及如何使用. 设计模式是什么? 设计模式是经过总结.优化的,对我们经常会碰到的 ...

  4. Spring 中context.start作用

    我们经常会看到 如下代码 ClassPathXmlApplicationContext context = new ClassPathXmlApplicationContext(configPath. ...

  5. 给sublime text添加ubuntu launcher快捷方式

    1.下载sublime text 2文件,解压并复制到/opt目录,文件夹名称不要含有空格 2.在/usr/share/applications目录下新建sublime_text.desktop文件 ...

  6. JAVA中的常见面试题1

    1.线程同步的方法的使用. sleep():使一个正在运行的线程处于睡眠状态,是一个静态方法,调用此方法要捕捉InterruptedException异常. wait():使一个线程处于等待状态,并且 ...

  7. 【转】手把手教你利用Jenkins持续集成iOS项目

    前言 众所周知,现在App的竞争已经到了用户体验为王,质量为上的白热化阶段.用户们都是很挑剔的.如果一个公司的推广团队好不容易砸了重金推广了一个APP,好不容易有了一些用户,由于一次线上的bug导致一 ...

  8. java volatile进阶(一)

    本篇文章继续学习volatile.上篇文章简单的介绍了volatile和synchonized,这篇文章讲一下什么时候可以用volatile. 先看一段代码. package com.chzhao.v ...

  9. POJ 1751 Highways (kruskal)

    题目链接:http://poj.org/problem?id=1751 题意是给你n个点的坐标,然后给你m对点是已经相连的,问你还需要连接哪几对点,使这个图为最小生成树. 这里用kruskal不会超时 ...

  10. HDU1398Square Coins(母函数)

    母函数介绍见另一篇随笔HDU1028Ignatius and the Princess III(母函数) #include<iostream> #include<stdio.h> ...