As an example of subclassing, the random module provides the WichmannHill class that implements an alternative generator in pure Python. The class provides a backward compatible way to reproduce results from earlier versions of Python, which used the Wichmann-Hill algorithm as the core generator. Note that this Wichmann-Hill generator can no longer be recommended: its period is too short by contemporary standards, and the sequence generated is known to fail some stringent randomness tests. See the references below for a recent variant that repairs these flaws.

Changed in version 2.3: MersenneTwister replaced Wichmann-Hill as the default generator.

The random module also provides the SystemRandom class which uses the system function os.urandom() to generate random numbers from sources provided by the operating system.

Warning

The pseudo-random generators of this module should not be used for security purposes. Use os.urandom() or SystemRandom if you require a cryptographically secure pseudo-random number generator.

Bookkeeping functions:

random.seed([x])

Initialize the basic random number generator. Optional argument x can be any hashable object. If x is omitted or None, current system time is used; current system time is also used to initialize the generator when the module is first imported. If randomness sources are provided by the operating system, they are used instead of the system time (see the os.urandom() function for details on availability).

Changed in version 2.4: formerly, operating system resources were not used.

random.getstate()

Return an object capturing the current internal state of the generator. This object can be passed to setstate() to restore the state.

New in version 2.1.

Changed in version 2.6: State values produced in Python 2.6 cannot be loaded into earlier versions.

random.setstate(state)

state should have been obtained from a previous call to getstate(), and setstate() restores the internal state of the generator to what it was at the time getstate() was called.

New in version 2.1.

random.jumpahead(n)

Change the internal state to one different from and likely far away from the current state. n is a non-negative integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in conjunction with multiple instances of the Random class: setstate() or seed() can be used to force all instances into the same internal state, and then jumpahead() can be used to force the instances’ states far apart.

New in version 2.1.

Changed in version 2.3: Instead of jumping to a specific state, n steps ahead, jumpahead(n) jumps to another state likely to be separated by many steps.

random.getrandbits(k)

Returns a python long int with k random bits. This method is supplied with the MersenneTwister generator and some other generators may also provide it as an optional part of the API. When available, getrandbits() enables randrange() to handle arbitrarily large ranges.

New in version 2.4.

Functions for integers:

random.randrange(stop)
random.randrange(start, stop[, step])

Return a randomly selected element from range(start, stop, step). This is equivalent to choice(range(start, stop, step)), but doesn’t actually build a range object.

New in version 1.5.2.

random.randint(a, b)

Return a random integer N such that a <= N <= b.

Functions for sequences:

random.choice(seq)

Return a random element from the non-empty sequence seq. If seq is empty, raises IndexError.

random.shuffle(x[, random])

Shuffle the sequence x in place. The optional argument random is a 0-argument function returning a random float in [0.0, 1.0); by default, this is the function random().

Note that for even rather small len(x), the total number of permutations of x is larger than the period of most random number generators; this implies that most permutations of a long sequence can never be generated.

random.sample(population, k)

Return a k length list of unique elements chosen from the population sequence. Used for random sampling without replacement.

New in version 2.3.

Returns a new list containing elements from the population while leaving the original population unchanged. The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each occurrence is a possible selection in the sample.

To choose a sample from a range of integers, use an xrange() object as an argument. This is especially fast and space efficient for sampling from a large population: sample(xrange(10000000), 60).

The following functions generate specific real-valued distributions. Function parameters are named after the corresponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations can be found in any statistics text.

random.random()

Return the next random floating point number in the range [0.0, 1.0).

random.uniform(a, b)

Return a random floating point number N such that a <= N <= b for a <= b and b <= N <= a for b < a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the equation a + (b-a) * random().

random.triangular(low, high, mode)

Return a random floating point number N such that low <= N <= high and with the specified mode between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the midpoint between the bounds, giving a symmetric distribution.

New in version 2.6.

random.betavariate(alpha, beta)

Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range between 0 and 1.

random.expovariate(lambd)

Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter would be called “lambda”, but that is a reserved word in Python.) Returned values range from 0 to positive infinity if lambd is positive, and from negative infinity to 0 if lambd is negative.

random.gammavariate(alpha, beta)

Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta > 0.

The probability distribution function is:

          x ** (alpha - 1) * math.exp(-x / beta)
pdf(x) = --------------------------------------
math.gamma(alpha) * beta ** alpha
random.gauss(mu, sigma)

Gaussian distribution. mu is the mean, and sigma is the standard deviation. This is slightly faster than the normalvariate() function defined below.

random.lognormvariate(mu, sigma)

Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution with mean mu and standard deviation sigma. mu can have any value, and sigma must be greater than zero.

random.normalvariate(mu, sigma)

Normal distribution. mu is the mean, and sigma is the standard deviation.

random.vonmisesvariate(mu, kappa)

mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter, which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform random angle over the range 0 to 2*pi.

random.paretovariate(alpha)

Pareto distribution. alpha is the shape parameter.

random.weibullvariate(alpha, beta)

Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

Alternative Generators:

class random.WichmannHill([seed])

Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as Random plus the whseed() method described below. Because this class is implemented in pure Python, it is not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is small enough to require care that two independent random sequences do not overlap.

random.whseed([x])

This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. See seed() for details. whseed() does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more than about 2**24 distinct internal states in all.

class random.SystemRandom([seed])

Class that uses the os.urandom() function for generating random numbers from sources provided by the operating system. Not available on all systems. Does not rely on software state and sequences are not reproducible. Accordingly, the seed() and jumpahead() methods have no effect and are ignored. The getstate() and setstate() methods raise NotImplementedError if called.

New in version 2.4.

Examples of basic usage:

>>> random.random()        # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice('abcdefghij') # Choose a random element
'c' >>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1] >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
[4, 1, 5]
 

python的random模块的更多相关文章

  1. 【转】python之random模块分析(一)

    [转]python之random模块分析(一) random是python产生伪随机数的模块,随机种子默认为系统时钟.下面分析模块中的方法: 1.random.randint(start,stop): ...

  2. python的random模块(生成验证码)

    python的random模块(生成验证码) random模块常用方法 random.random() #生成0到1之间的随机数,没有参数,float类型 random.randint(1, 3) # ...

  3. Python中random模块生成随机数详解

    Python中random模块生成随机数详解 本文给大家汇总了一下在Python中random模块中最常用的生成随机数的方法,有需要的小伙伴可以参考下 Python中的random模块用于生成随机数. ...

  4. 你真的用好了Python的random模块吗?

    random模块 用于生成伪随机数 源码位置: Lib/random.py(看看就好,千万别随便修改) 真正意义上的随机数(或者随机事件)在某次产生过程中是按照实验过程中表现的分布概率随机产生的,其结 ...

  5. Python之random模块

    random模块 产生随机数的模块 是Python的标准模块,直接导入即可 import random 1)随机取一个整数,使用.randint()方法: import random print(ra ...

  6. Python:random模块

    近排练习代码时候经常会用到random模块,以防后面忘记还是需要记录一下. 首先导入模块: import random random.random():用于生成一个0到1的随机浮点数: 0 <= ...

  7. ZH奶酪:【Python】random模块

    Python中的random模块用于随机数生成,对几个random模块中的函数进行简单介绍.如下:random.random() 用于生成一个0到1的随机浮点数.如: import random ra ...

  8. python 之 random 模块、 shutil 模块、shelve模块、 xml模块

    6.12 random 模块 print(random.random()) (0,1)----float 大于0且小于1之间的小数 print(random.randint(1,3)) [1,3] 大 ...

  9. Python time & random模块

    time模块 三种时间表示 在Python中,通常有这几种方式来表示时间: 时间戳(timestamp) :         通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的 ...

  10. Python 之 random模块

    Python中的random模块用于生成随机数.1.random.random()  #用于生成一个0到1的随机浮点数:0<= n < 1.0>>> random.ran ...

随机推荐

  1. WordPress数据库研究 (转)

    该系列文章将会详细介绍WordPress数据总体的设计思路.详细介绍WordPress10个数据表的设计.并对WordPress系统中涉及的用户信息.分类信息.链接信息.文章信息.文章评论信息.基本设 ...

  2. Doubango ims 框架 分析之 多媒体部分

    序言 RTP提供带有实时特性的端对端数据传输服务,传输的数据如:交互式的音频和视频.那些服务包括有效载荷类型定义,序列号,时间戳和传输监测控制.应用程序在UDP上运行RTP来使用它的多路技术和chec ...

  3. MPI编程的常用接口速查

    获取当前时间 在插入MPI提供的头文件后,可以获得获取时间的函数. double MPI_Wtime(void) 取得当前时间, 计时的精度由 double MPI_Wtick(void) 取得作为对 ...

  4. poj 3694 Network

    题意: 添加每条新连接后网络中桥的数目// 超时 先放着了 ,下次改//早上这代码超时了 下午改了,代码在下面#include <iostream> #include <algori ...

  5. Shell中取时间格式方法

    Shell中取时间格式方法2007-09-13 15:35常用date的显示格式: date +%F //2007-03-06date +%Y%m%d//20070306 date +%T //23: ...

  6. 【转】iOS-延迟操作方法总结

    原文网址:http://lysongzi.com/2016/01/30/iOS-%E5%BB%B6%E8%BF%9F%E6%93%8D%E4%BD%9C%E6%96%B9%E6%B3%95%E6%80 ...

  7. 【转】VI/VIM常用命令

    原文网址:http://www.blogjava.net/woxingwosu/archive/2007/09/06/125193.html Vi是“Visual interface”的简称,它在Li ...

  8. java运用FFMPEG视频转码技术

    基于windows系统安装FFMPEG转码技术 http://wenku.baidu.com/link?url=z4Tv3CUXxxzLpa5QPI-FmfFtrIQeiCYNq6Uhe6QCHkU- ...

  9. z-index的妙用

    总是在纠结一个问题,当然我是前端初学者.这个问题就是,一个元素放在另一个元素里面,总希望它显示时,但是别撑开元素.这个时候一定要想到z-index. 例如今天写的一个浮动在导航栏下面的一个图片,我用的 ...

  10. android学习笔记六

    Android中Activity的Intent大全 Api Level 3: (SDK 1.5) android.intent.action.ALL_APPS android.intent.actio ...