围观高手是如何写好 Python 循环,把内存用到极致的?
0 前言
说到处理循环,我们习惯使用for, while等,比如依次打印每个列表中的字符:
lis = ['I', 'love', 'python']
for i in lis:
print(i)
I
love
python
在打印内容字节数较小时,全部载入内存后,再打印,没有问题。可是,如果现在有成千上百万条车辆行驶轨迹,叫你分析出其中每个客户的出行规律,堵车情况等,假如是在单机上处理这件事。
你可能首先要面临,也可能被你忽视,最后代码都写好后,才可能暴露出的一个问题:outofmemory, 这在实际项目中经常遇到。

这个问题提醒我们,处理数据时,如何写出高效利用内存的程序,就显得很重要。今天,我们就来探讨如何高效利用内存,节省内存同时还能把事情办好。
其实,Python已经准备好一个模块专门用来处理这件事,它就是 itertools 模块,这里面几个函数的功能其实很好理解。
我不打算笼统的介绍它们所能实现的功能,而是想分析这些功能背后的实现代码,它们如何做到高效节省内存的,Python内核的贡献者们又是如何写出一手漂亮的代码的,这很有趣,不是吗?
OK,let's go. Hope you enjoy the journey!
1 拼接元素
itertools 中的chain 函数实现元素拼接,原型如下,参数*表示个数可变的参数
chain(iterables)
应用如下:
In [33]: list(chain(['I','love'],['python'],['very', 'much']))
Out[33]: ['I', 'love', 'python', 'very', 'much']
哇,不能再好用了,它有点join的味道,但是比join强,它的重点在于参数都是可迭代的实例。
那么,chain如何实现高效节省内存的呢?chain大概的实现代码如下:
def chain(*iterables):
for it in iterables:
for element in it:
yield element
以上代码不难理解,chain本质返回一个生成器,所以它实际上是一次读入一个元素到内存,所以做到最高效地节省内存。
2 逐个累积
返回列表的累积汇总值,原型:
accumulate(iterable[, func, *, initial=None])
应用如下:
In [36]: list(accumulate([1,2,3,4,5,6],lambda x,y: x*y))
Out[36]: [1, 2, 6, 24, 120, 720]
accumulate大概的实现代码如下:
def accumulate(iterable, func=operator.add, *, initial=None):
it = iter(iterable)
total = initial
if initial is None:
try:
total = next(it)
except StopIteration:
return
yield total
for element in it:
total = func(total, element)
yield total
以上代码,你还好吗?与chain简单的yield不同,此处稍微复杂一点,yield有点像return,所以 yield total那行直接就返回一个元素,也就是iterable的第一个元素,因为任何时候这个函数返回的第一个元素就是它的第一个。又因为yield返回的是一个generator对象,比如名字gen,所以next(gen)时,代码将会执行到 for element in it:这行,而此时的迭代器it 已经指到iterable的第二个元素,OK,相信你懂了!
3 漏斗筛选
它是compress 函数,功能类似于漏斗功能,所以我称它为漏斗筛选,原型:
compress(data, selectors)
In [38]: list(compress('abcdefg',[1,1,0,1]))
Out[38]: ['a', 'b', 'd']
容易看出,compress返回的元素个数等于两个参数中较短的列表长度。
它的大概实现代码:
def compress(data, selectors):
return (d for d, s in zip(data, selectors) if s)
这个函数非常好用
4 段位筛选
扫描列表,不满足条件处开始往后保留,原型如下:
dropwhile(predicate, iterable)
应用例子:
In [39]: list(dropwhile(lambda x: x<3,[1,0,2,4,1,1,3,5,-5]))
Out[39]: [4, 1, 1, 3, 5, -5]
实现它的大概代码如下:
def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x
5 段位筛选2
扫描列表,只要满足条件就从可迭代对象中返回元素,直到不满足条件为止,原型如下:
takewhile(predicate, iterable)
应用例子:
In [43]: list(takewhile(lambda x: x<5, [1,4,6,4,1]))
Out[43]: [1, 4]
实现它的大概代码如下:
def takewhile(predicate, iterable):
for x in iterable:
if predicate(x):
yield x
else:
break #立即返回
6 次品筛选
扫描列表,只要不满足条件都保留,原型如下:
dropwhile(predicate, iterable)
应用例子:
In [40]: list(filterfalse(lambda x: x%2==0, [1,2,3,4,5,6]))
Out[40]: [1, 3, 5]
实现它的大概代码如下:
def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x
7 切片筛选
Python中的普通切片操作,比如:
lis = [1,3,2,1]
lis[:1]
它们的缺陷还是lis 必须全部载入内存,所以更节省内存的操作islice,原型如下:
islice(iterable, start, stop[, step])
应用例子:
In [41]: list(islice('abcdefg',1,4,2))
Out[41]: ['b', 'd']
实现它的大概代码如下:
def islice(iterable, *args):
s = slice(*args)
start, stop, step = s.start or 0, s.stop or sys.maxsize, s.step or 1
it = iter(range(start, stop, step))
try:
nexti = next(it)
except StopIteration:
for i, element in zip(range(start), iterable):
pass
return
try:
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = next(it)
except StopIteration:
for i, element in zip(range(i + 1, stop), iterable):
pass
巧妙利用生成器迭代结束时会抛出异常StopIteration,做一些边界处理的事情。
8 细胞分裂
tee函数类似于我们熟知的细胞分裂,它能复制原迭代器n个,原型如下:
tee(iterable, n=2)
应用如下,可以看出复制出的两个迭代器是独立的
a = tee([1,4,6,4,1],2)
In [51]: next(a[0])
Out[51]: 1
In [52]: next(a[1])
Out[52]: 1
实现它的代码大概如下:
def tee(iterable, n=2):
it = iter(iterable)
deques = [collections.deque() for i in range(n)]
def gen(mydeque):
while True:
if not mydeque:
try:
newval = next(it)
except StopIteration:
return
for d in deques:
d.append(newval)
yield mydeque.popleft()
return tuple(gen(d) for d in deques)
tee 实现内部使用一个队列类型deques,起初生成空队列,向复制出来的每个队列中添加元素newval, 同时yield 当前被调用的mydeque中的最左元素。
9 map变体
starmap可以看做是map的变体,它能更加节省内存,同时iterable的元素必须也为可迭代对象,原型如下:
starmap(function, iterable)
应用它:
In [63]: list(starmap(lambda x,y: str(x)+'-'+str(y), [('a',1),('b',2),('c',3)]))
Out[63]: ['a-1', 'b-2', 'c-3']
starmap的实现细节如下:
def starmap(function, iterable):
for args in iterable:
yield function(*args)
10 复制元素
repeat实现复制元素n次,原型如下:
repeat(object[, times])
应用如下:
In [66]: list(repeat(6,3))
Out[66]: [6, 6, 6]
In [67]: list(repeat([1,2,3],2))
Out[67]: [[1, 2, 3], [1, 2, 3]]
它的实现细节大概如下:
def repeat(object, times=None):
if times is None:# 如果times不设置,将一直repeat下去
while True:
yield object
else:
for i in range(times):
yield object
11 笛卡尔积
笛卡尔积实现的效果同下:
((x,y) for x in A for y in B)
所以,笛卡尔积的实现效果如下:
In [68]: list(product('ABCD', 'xy'))
Out[68]:
[('A', 'x'),
('A', 'y'),
('B', 'x'),
('B', 'y'),
('C', 'x'),
('C', 'y'),
('D', 'x'),
('D', 'y')]
它的实现细节:
def product(*args, repeat=1):
pools = [tuple(pool) for pool in args] * repeat
result = [[]]
for pool in pools:
result = [x+[y] for x in result for y in pool]
for prod in result:
yield tuple(prod)
12 加强版zip
组合值。若可迭代对象的长度未对齐,将根据 fillvalue 填充缺失值,注意:迭代持续到耗光最长的可迭代对象,效果如下:
In [69]: list(zip_longest('ABCD', 'xy', fillvalue='-'))
Out[69]: [('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')]
它的实现细节:
def zip_longest(*args, fillvalue=None):
iterators = [iter(it) for it in args]
num_active = len(iterators)
if not num_active:
return
while True:
values = []
for i, it in enumerate(iterators):
try:
value = next(it)
except StopIteration:
num_active -= 1
if not num_active:
return
iterators[i] = repeat(fillvalue)
value = fillvalue
values.append(value)
yield tuple(values)
它里面使用repeat,也就是在可迭代对象的长度未对齐时,根据 fillvalue 填充缺失值。理解上面代码的关键是迭代器对象(iter),next方法的特殊性:
In [74]: for i, it in enumerate([iter([1,2,3]),iter(['x','y'])]):
...: print(next(it))
#输出:
1
x
结合这个提示再理解上面代码,就不会吃力。
总结
Python的itertools模块提供的节省内存的高效迭代器,里面实现基本都借助于生成器,所以一方面了解这12个函数所实现的基本功能,同时也能加深对生成器(generator)的理解,为我们写出更加高效、简洁、漂亮的代码打下坚实基础。
0 前言
说到处理循环,我们习惯使用for, while等,比如依次打印每个列表中的字符:
lis = ['I', 'love', 'python']for i in lis: print(i)Ilovepython
在打印内容字节数较小时,全部载入内存后,再打印,没有问题。可是,如果现在有成千上百万条车辆行驶轨迹,叫你分析出其中每个客户的出行规律,堵车情况等,假如是在单机上处理这件事。
你可能首先要面临,也可能被你忽视,最后代码都写好后,才可能暴露出的一个问题:outofmemory, 这在实际项目中经常遇到。
这个问题提醒我们,处理数据时,如何写出高效利用内存的程序,就显得很重要。今天,我们就来探讨如何高效利用内存,节省内存同时还能把事情办好。
其实,Python已经准备好一个模块专门用来处理这件事,它就是 itertools 模块,这里面几个函数的功能其实很好理解。
我不打算笼统的介绍它们所能实现的功能,而是想分析这些功能背后的实现代码,它们如何做到高效节省内存的,Python内核的贡献者们又是如何写出一手漂亮的代码的,这很有趣,不是吗?
OK,let's go. Hope you enjoy the journey!
1 拼接元素
itertools 中的chain 函数实现元素拼接,原型如下,参数*表示个数可变的参数
chain(iterables)
应用如下:
]: list(chain([]: ['I', 'love', 'python', 'very', 'much']
哇,不能再好用了,它有点join的味道,但是比join强,它的重点在于参数都是可迭代的实例。
那么,chain如何实现高效节省内存的呢?chain大概的实现代码如下:
def chain(*iterables): for it in iterables: for element in it: yield element
以上代码不难理解,chain本质返回一个生成器,所以它实际上是一次读入一个元素到内存,所以做到最高效地节省内存。
2 逐个累积
返回列表的累积汇总值,原型:
accumulate(iterable[, func, *, initial=None])
应用如下:
In [36]: list(accumulate([1,2,3,4,5,6],lambda x,y: x*y))Out[36]: [1, 2, 6, 24, 120, 720]
accumulate大概的实现代码如下:
def accumulate(iterable, func=operator.add, *, initial=None): it = iter(iterable) total = initial if initial is None: try: total = next(it) except StopIteration: return yield total for element in it: total = func(total, element) yield total
以上代码,你还好吗?与chain简单的yield不同,此处稍微复杂一点,yield有点像return,所以 yield total那行直接就返回一个元素,也就是iterable的第一个元素,因为任何时候这个函数返回的第一个元素就是它的第一个。又因为yield返回的是一个generator对象,比如名字gen,所以next(gen)时,代码将会执行到 for element in it:这行,而此时的迭代器it 已经指到iterable的第二个元素,OK,相信你懂了!
3 漏斗筛选
它是compress 函数,功能类似于漏斗功能,所以我称它为漏斗筛选,原型:
compress(data, selectors)
]: list(compress(,,,]))]: ['a', 'b', 'd']
容易看出,compress返回的元素个数等于两个参数中较短的列表长度。
它的大概实现代码:
def compress(data, selectors): return (d for d, s in zip(data, selectors) if s)
这个函数非常好用
4 段位筛选
扫描列表,不满足条件处开始往后保留,原型如下:
dropwhile(predicate, iterable)
应用例子:
In [39]: list(dropwhile(lambda x: x<3,[1,0,2,4,1,1,3,5,-5]))Out[39]: [4, 1, 1, 3, 5, -5]
实现它的大概代码如下:
def dropwhile(predicate, iterable): iterable = iter(iterable) for x in iterable: if not predicate(x): yield x break for x in iterable: yield x
5 段位筛选2
扫描列表,只要满足条件就从可迭代对象中返回元素,直到不满足条件为止,原型如下:
takewhile(predicate, iterable)
应用例子:
In [43]: list(takewhile(lambda x: x<5, [1,4,6,4,1]))Out[43]: [1, 4]
实现它的大概代码如下:
def takewhile(predicate, iterable): for x in iterable: if predicate(x): yield x else: break #立即返回
6 次品筛选
扫描列表,只要不满足条件都保留,原型如下:
dropwhile(predicate, iterable)
应用例子:
]: list(filterfalse(lambda x: x%==, [,,,,,]))]: [, , ]
实现它的大概代码如下:
def dropwhile(predicate, iterable): iterable = iter(iterable) for x in iterable: if not predicate(x): yield x break for x in iterable: yield x
7 切片筛选
Python中的普通切片操作,比如:
lis = [1,3,2,1]lis[:1]
它们的缺陷还是lis 必须全部载入内存,所以更节省内存的操作islice,原型如下:
islice(iterable, start, stop[, step])
应用例子:
In []: list(islice(,,))Out[]: ['b', 'd']
实现它的大概代码如下:
, s.stop it = iter(range(start, stop, step)) , stop), iterable): pass
巧妙利用生成器迭代结束时会抛出异常StopIteration,做一些边界处理的事情。
8 细胞分裂
tee函数类似于我们熟知的细胞分裂,它能复制原迭代器n个,原型如下:
tee(iterable, n=2)
应用如下,可以看出复制出的两个迭代器是独立的
a = tee([1,4,6,4,1],2)In [51]: next(a[0])Out[51]: 1
In [52]: next(a[1])Out[52]: 1
实现它的代码大概如下:
): it = iter(iterable) deques = [collections.deque() for i in range(n)] def gen(mydeque): while True: if not mydeque: try: newval = next(it) except StopIteration: return for d in deques: d.append(newval) yield mydeque.popleft() return tuple(gen(d) for d in deques)
tee 实现内部使用一个队列类型deques,起初生成空队列,向复制出来的每个队列中添加元素newval, 同时yield 当前被调用的mydeque中的最左元素。
9 map变体
starmap可以看做是map的变体,它能更加节省内存,同时iterable的元素必须也为可迭代对象,原型如下:
starmap(function, iterable)
应用它:
]: list(starmap(lambda x,y: str(x)+),(),()]))]: ['a-1', 'b-2', 'c-3']
starmap的实现细节如下:
def starmap(function, iterable): for args in iterable: yield function(*args)
10 复制元素
repeat实现复制元素n次,原型如下:
repeat(object[, times])
应用如下:
In [66]: list(repeat(6,3))Out[66]: [6, 6, 6]
In [67]: list(repeat([1,2,3],2))Out[67]: [[1, 2, 3], [1, 2, 3]]
它的实现细节大概如下:
def repeat(object, times=None): if times is None:# 如果times不设置,将一直repeat下去 while True: yield object else: for i in range(times): yield object
11 笛卡尔积
笛卡尔积实现的效果同下:
((x,y) for x in A for y in B)
所以,笛卡尔积的实现效果如下:
]: list(product(]:[('A', 'x'), ('A', 'y'), ('B', 'x'), ('B', 'y'), ('C', 'x'), ('C', 'y'), ('D', 'x'), ('D', 'y')]
它的实现细节:
def product(*args, ): pools = [tuple(pool) for pool in args] * repeat result = [[]] for pool in pools: result = [x+[y] for x in result for y in pool] for prod in result: yield tuple(prod)
12 加强版zip
组合值。若可迭代对象的长度未对齐,将根据 fillvalue 填充缺失值,注意:迭代持续到耗光最长的可迭代对象,效果如下:
]: list(zip_longest(]: [('A', 'x'), ('B', 'y'), ('C', '-'), ('D', '-')]
它的实现细节:
if not num_active: return iterators[i] = repeat(fillvalue) value = fillvalue values.append(value) yield tuple(values)
它里面使用repeat,也就是在可迭代对象的长度未对齐时,根据 fillvalue 填充缺失值。理解上面代码的关键是迭代器对象(iter),next方法的特殊性:
In []: ,,]),iter([ x
结合这个提示再理解上面代码,就不会吃力。
总结
Python的itertools模块提供的节省内存的高效迭代器,里面实现基本都借助于生成器,所以一方面了解这12个函数所实现的基本功能,同时也能加深对生成器(generator)的理解,为我们写出更加高效、简洁、漂亮的代码打下坚实基础。
围观高手是如何写好 Python 循环,把内存用到极致的?的更多相关文章
- Python循环语句
1.Python循环类型 1.while循环:在某条件下,循环执行某段程序 a. while语句有两个重要命令:continue,break来跳出循环. continue用来跳出该次循环 break用 ...
- python 循环语句 函数 模块
python循环语句 while循环语法结构 当需要语句不断的重复执行时,可以使用while循环 while expression: while_suite 语句ehile_suite会被连续不断的循 ...
- jmeter数据库,charles抓包,Python循环语句
jmeter数据库,charles抓包,Python循环语句 一.Jemeter数据库 添加jar包数据库 jemeter=>浏览 添加JDBC Connection Configuration ...
- python循环解压rar文件
python循环解压rar文件 C:. │ main.py │ ├─1_STL_算法简介 │ STL_算法简介.rar │ └─2_STL_算法_填充新值 STL_算法_填充新值.rar 事情是这样的 ...
- python循环和布尔表达式总结
1.Python的for循环是循环遍历序列的有限循环. 2.Python的while语句是一个不定循环的例子.只要循环条件保持为真,它就继续迭代.使用不定循环时,程序员必须注意,以免不小心写成无限循环 ...
- Python循环加强版——列表生成式
记得我们在其他语言中都学到过循环,尤其是对for循环是再熟悉不过了 比如我有一个数组 a[10]={1,2,3,4,5,6,7,8,9,10} 下面需要依次循环打印出来,C语言首先想到的是 for( ...
- 孤荷凌寒自学python第十五天python循环控制语句
孤荷凌寒自学python第十五天python循环控制语句 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) python中只有两种循环控制语句 一.while循环 while 条件判断式 1: ...
- python基础:python循环、三元运算、字典、文件操作
目录: python循环 三元运算 字符串 字典 文件操作基础 一.python编程 在面向过程式编程语言的执行流程中包含: 顺序执行 选择执行 循环执行 if是条件判断语句:if的执行流程属于选择执 ...
- 如何优雅的写好python代码?
Python与其他语言(比如 java或者 C ++ )相比有较大的区别,其中最大的特点就是非常简洁,如果按照其他语言的思路老师写Python代码,则会使得代码繁琐复杂,并且容易出现bug,在Pyth ...
随机推荐
- Newman
目录 简介 安装 使用 简介 Newman是为postman而生,专门用来运行postman编写好的脚本 使用Newman,你可以很方便的用命令行来执行postman collections Newm ...
- 文件(图片)转base64
普通图片转base64 function getBase64(url, callback){ var canvas = document.createElement('canvas'),//创建can ...
- Mysql数据库优化一:集群(读写分离)之主从服务器的安装与配置
Mysql数据库的集群(读写分离),说白了就是将读操作和写操作分开在不同的服务器上实现,以达到提高效率的目的. 大致原理如下: 数据库中的所有操作都是有日志记录的(前提是要打开这个日志记录功能) 1. ...
- 《Dotnet9》系列-开源C# WPF控件库2《Panuon.UI.Silver》强力推荐
时间如流水,只能流去不流回! 点赞再看,养成习惯,这是您给我创作的动力! 本文 Dotnet9 https://dotnet9.com 已收录,站长乐于分享dotnet相关技术,比如Winform.W ...
- SpringBoot电商项目实战 — ElasticSearch接入实现
如今在一些中大型网站中,搜索引擎已是必不可少的内容了.首先我们看看搜索引擎到底是什么呢?搜索引擎,就是根据用户需求与一定算法,运用特定策略从互联网检索出制定信息反馈给用户的一门检索技术.搜索引擎依托于 ...
- .NET Core依赖注入集成Dynamic Proxy
在<Castle DynamicProxy基本用法>中介绍了如何将DP与Autofac集成使用,而 .NET Core有自己的依赖注入容器,在不依赖第三方容器的基础上,如何实现动态代理就成 ...
- 关于云服务器中tomcat配置出现的部分问题以及解决方法
问题描述:(一)tomcat的8080端口修改为80端口之后不能使用域名直接访问: (二)添加的项目不能通过域名直接访问(服务器端还待解决) 大致配置流程: 1.需要先购买合适的服务器,进行域名备案, ...
- AWVS 10.5使用指南
前言 AWVS是一款可与IBM AppScan比肩的.功能十分强大的Web漏洞扫描器.由Acunetix开发,官方站点提供了关于各种类型漏洞的解释和如何防范,具体参考:Acunetix Web Vul ...
- ubuntu14.04编译vim8.1
安装依赖 这一步其实我没做,直接下载编译成功了.估计有些包不是必需的.姑且列在这里供参考 sudo apt install libncurses5-dev libgnome2-dev libgnome ...
- Blog 须知
转载 转载需通过博主同意方可 代码格式 博主遵循 \(Google\) 代码格式,代码满足以下规范: 字符数 每行代码必需不超过 80 字符 缩进 缩进不使用制表符,而是 2 个空格缩进 函数 函数左 ...