概要
本文的想法来自于本人学习MySQL时的一个知识点:MySQL Innodb引擎中对缓冲区的处理。虽然没有仔细研究其源码实现,但其设计仍然启发了我。

本文针对LRU存在的问题,思考一种增强算法来避免或降低缓存污染,主要办法是对原始LRU空间划分出young与old两段区域 ,通过命中数(或block时间)来控制,并用一个0.37的百分比系数规定old的大小。
内容分以下几小节,实现代码为Java:

1.LRU基本概念
2.LRU存在问题与LRUG设计
3.LRUG详细说明
4.完整示例代码

1.LRU基本概念
LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据。常用于一些缓冲区置换,页面置换等处理。

一个典型的双向链表+HashMap的LRU如下:

2.LRU存在问题与LRUG设计

LRU的问题是无法回避突发性的热噪数据,造成缓存数据的污染。对此有些LRU的变种,如LRU-K、2Q、MQ等,通过维护两个或多个队列来控制缓存数据的更新淘汰。我把本文讨论的算法叫LRUG,仅是我写代码时随便想的一个名字。

LRUG使用HashMap和双向链表,没有其他的维护队列,而是在双向链表上划分young,old区域,young段在old段之前,有新数据时不会马上插入到young段,而是先放入old段,若该数据持续命中,次数超过一定数量(也可以是锁定一段时间)后再进行插入首部的动作。两段以37%为界,即满载后old段的大小最多占总容量的37%。(图1)

(图1)

3.LRUG详细说明

3.1首先给出双向链表的节点结构,其中hitNum是命中次数:

    private static class Node<K,V>{
int hitNum;
K key;
V value;
Node<K,V> prev;
Node<K,V> next; Node(K key,V value){
this.key=key;
this.value=value;
hitNum=0;
}
}

3.2在加载阶段,数据以先后顺序加入链表,半满载时,young段已满,新数据以插入方式加入到old段,如图2所示。注意半满载时,也可能有madeYoung操作,把old区的数据提到young头。

(图2)

    public void put(K key,V value){
Node<K,V> node=caches.get(key); if(node==null){
if(caches.size()>=capcity){
caches.remove(last.key);
removeLast();
}
node=new Node(key,value); if(caches.size()>=pointBorder){
madeOld(node);
}else{
madeYoung(node);
}
}else {
node.value=value;
if(++node.hitNum>BLOCK_HIT_NUM){
madeYoung(node);
}
}
caches.put(key,node);
}

3.3当数据命中时,如果位于young区,命中数+1后进行常规的madeYoung操作,把该项提到链表首部。如图3

(图3)

如果命中项位于old区,对命中数+1后与BLOCK_HIT_NUM设置的值做判断,超过设定值说明该项数据可能不是突发数据,进行madeYoung操作提到链表首部,否则不做处理。
特别的,如果命中项正好是point,则point应该往后退一项,指向原point的下一项,此时young区膨胀了一项,而old区缩小了一项。极端情况下,ponit项持续被命中并进行madeYoung,point不断后退直到尾巴,此时young区占有100%容量,而old区为0,设置point指向last,意味着新数据项加入时,淘汰掉young区的末尾,而新数据项放在末尾成为old区。如图4

(图4)

    public void madeYoung(Node node){
if(first==node){
return;
}
if(node==point){
point=node.next;
if(point==null) {
point=last;
}
}
if(node.next!=null){
node.next.prev=node.prev;
}
if(node.prev!=null){
node.prev.next=node.next;
}
if(node==last){
last=node.prev;
}
if(first==null||last==null){
first=last=node;
point=null;
return;
} node.next=first;
first.prev=node;
first=node;
} public void madeOld(Node node){
if(point.prev!=null){
point.prev.next=node;
node.prev=point.prev;
}
if(point.next!=null){
node.next=point.next;
point.next.prev=node;
}
point=node;
}

3.4需要一个清理的方法。也可以设置一些监测方法,如一段时间内的命中数(监测命中率)等,这与本篇主要内容无关就不写在这了。

    public void removeLast(){
if(last!=null){
if(last==point) {
point=null;
} last=last.prev;
if(last==null) {
first=null;
}else{
last.next=null;
}
}
}

 4.示例代码

主要代码如下,时间仓促,可能一些地方会考虑不周,读者如发现,欢迎指出。

package com.company;
import java.util.HashMap; public class LRUNum<K,V> {
private HashMap<K,Node> caches;
private Node first;
private Node last;
private Node point;
private int size;
private int capcity;
private static final int BLOCK_HIT_NUM=2;
private static final float MID_POINT=0.37f;
private int pointBorder; public LRUNum(int capcity){
this.size=0;
this.capcity=capcity;
this.caches=new HashMap<K,Node>(capcity); this.pointBorder=this.capcity-(int)(this.capcity*this.MID_POINT);
} public void put(K key,V value){
Node<K,V> node=caches.get(key); if(node==null){
if(caches.size()>=capcity){
caches.remove(last.key);
removeLast();
}
node=new Node(key,value); if(caches.size()>=pointBorder){
madeOld(node);
}else{
madeYoung(node);
}
}else {
node.value=value;
if(++node.hitNum>BLOCK_HIT_NUM){
madeYoung(node);
}
}
caches.put(key,node);
} public V get(K key){
Node<K,V> node =caches.get(key);
if(node==null){
return null;
}
if(++node.hitNum>BLOCK_HIT_NUM){
madeYoung(node);
}
return node.value;
} public Object remove(K key){
Node<K,V> node =caches.get(key); if(node!=null){
if(node.prev!=null){
node.prev.next=node.next;
}
if(node.next!=null){
node.next.prev=node.prev;
}
if(node==first){
first=node.next;
}
if(node==last){
last=node.prev;
}
}
return caches.remove(key);
} public void removeLast(){
if(last!=null){
if(last==point) {
point=null;
} last=last.prev;
if(last==null) {
first=null;
}else{
last.next=null;
}
}
} public void clear(){
first=null;
last=null;
point=null;
caches.clear();
} public void madeYoung(Node node){
if(first==node){
return;
}
if(node==point){
point=node.next;
if(point==null) {
point=last;
}
}
if(node.next!=null){
node.next.prev=node.prev;
}
if(node.prev!=null){
node.prev.next=node.next;
}
if(node==last){
last=node.prev;
}
if(first==null||last==null){
first=last=node;
point=null;
return;
} node.next=first;
first.prev=node;
first=node;
} public void madeOld(Node node){
if(point.prev!=null){
point.prev.next=node;
node.prev=point.prev;
}
if(point.next!=null){
node.next=point.next;
point.next.prev=node;
}
point=node;
} private static class Node<K,V>{
int hitNum;
K key;
V value;
Node<K,V> prev;
Node<K,V> next; Node(K key,V value){
this.key=key;
this.value=value;
hitNum=0;
}
} }

LRU算法与增强的更多相关文章

  1. Android图片缓存之Lru算法

    前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发 ...

  2. 缓存淘汰算法--LRU算法

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...

  3. 借助LinkedHashMap实现基于LRU算法缓存

    一.LRU算法介绍 LRU(Least Recently Used)最近最少使用算法,是用在操作系统中的页面置换算法,因为内存空间是有限的,不可能把所有东西都放进来,所以就必须要有所取舍,我们应该把什 ...

  4. LinkedHashMap实现LRU算法

    LinkedHashMap特别有意思,它不仅仅是在HashMap上增加Entry的双向链接,它更能借助此特性实现保证Iterator迭代按照插入顺序(以insert模式创建LinkedHashMap) ...

  5. LinkedHashMap 和 LRU算法实现

    个人觉得LinkedHashMap 存在的意义就是为了实现 LRU 算法. public class LinkedHashMap<K,V> extends HashMap<K,V&g ...

  6. 简单LRU算法实现缓存

    最简单的LRU算法实现,就是利用jdk的LinkedHashMap,覆写其中的removeEldestEntry(Map.Entry)方法即可,如下所示: java 代码 import java.ut ...

  7. memached 服务器lru算法

    1.LRU是Least Recently Used的缩写,即最近最少使用页面置换算法,是为虚拟页式存储管理服务的.LRU算法的提出,是基于这样一个事实:在前面几条指令中使用频繁的页面很可能在后面的几条 ...

  8. 用LinkedHashMap实现LRU算法

    (在学习操作系统时,要做一份有关LRU和clock算法的实验报告,很多同学都应该是通过数组去实现LRU,可能是对堆栈的使用和链表的使用不是很熟悉吧,在网上查资料时看到了LinkedHashMap,于是 ...

  9. 近期最久未使用页面淘汰算法———LRU算法(java实现)

    请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次訪问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 依照 ...

随机推荐

  1. Pashmak and Buses(构造)

    题目链接:http://codeforces.com/problemset/problem/459/C 题意:n个人, k辆车, d天,每天将所有 任意人安排到k辆车, 问怎样安排, 可时不存在 2人 ...

  2. RabbitMQ的入门学习

    RabbitMq消息队列 参考:https://blog.csdn.net/hellozpc/article/details/81436980 什么是消息队列 MQ :message Queue ,实 ...

  3. 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》

     论文阅读:Face Recognition: From Traditional to Deep Learning Methods  <人脸识别综述:从传统方法到深度学习>     一.引 ...

  4. 【Oracle】Oracle数据库基本指标查看

    目录 1.查看表空间 2.查看用户 3.查看数据库内存 4.查看数据库版本 5.oracle归档情况 6.查看redo log日志位置 7.查看数据库的控制文件 8.查看RMAN的备份情况 9.FRA ...

  5. Java基础知识总结之类的集合

    Java集合概述 1.集合类也叫作容器类.它的功能相当于一个容器.可以存储数量不确定的数据,以及保存具有映射关系的数据(也被称为关联数组). 2.Java的集合(容器),它是用来”装对象的“(实际上是 ...

  6. linux网络配置(ifcfg)

    将linux主机接入到网络需要配置哪些配置项? IP/NETMASK:本地通信. 路由(网管):跨网络通信. DNS服务器地址:基于主机名通信. DNS服务器有三种:主/备用DNS服务器/第三备份dn ...

  7. PHP安装sodium加密扩展

    1.为什么会用到sodium加密扩展? 最近在做微信服务商相关的开发,主要用的的接口为微信小微商户进件接口.在请求相关接口中,需要对一些敏感字段进行加密,加密过程见https://pay.weixin ...

  8. day20191012笔记

    课程默写笔记: 1.程序架构 C/S 客户端/服务器端 B/S 浏览器/服务器端 2.Tomcat应用服务器 tomcat默认端口号是80:tomcat配置文件中通常端口的定义是8080: 3.使用开 ...

  9. Spring Boot整合MyBatis(非注解版)

    Spring Boot整合MyBatis(非注解版),开发时采用的时IDEA,JDK1.8 直接上图: 文件夹不存在,创建一个新的路径文件夹 创建完成目录结构如下: 本人第一步习惯先把需要的包结构创建 ...

  10. python画樱花

    用python画简单的樱花 代码如下: import turtle as T import random import time # 画樱花的躯干(60,t) def Tree(branch, t): ...