P1415 拆分数列 DP
题意:
将一个数字串分成许多不同的小串,使得这些小串代表的数字严格递增,要求最后一个数字尽可能地小。
然后满足字典序尽可能大。
思路:
由于最后一个数字要尽可能地小,所以先处理出每个数的L【i】, 即第i位最少要和L【i】这个位子的值组合才能满足要求。求出L【i】后,固定好最后的数的大小。
因为要求前面的数尽可能地大,所以,开始计算R【i】,表示第i位最远能和哪个位子的值组合才能满足要求。
注意最后一块的前导0要带上。
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = ;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/
const int maxn = ; int dp1[maxn],dp2[maxn];
char cas[],num[];
int r[maxn];
bool check(int l1,int r1,int l2,int r2){
while(num[l1] == '' && l1 < r1) l1++;
while(num[l2] == '' && l2 < r2) l2++; if(r1 - l1 + < r2 - l2 + ) return true;
if(r1 - l1 + > r2 - l2 + ) return false; for(int i=l1, j=l2; i<=r1 && j <= r2; i++, j++){
if(num[i] > num[j]) return false;
else if(num[i] < num[j]) return true;
} return false;
}
int main(){
scanf("%s", num + );
int n = strlen(num+); for(int i=; i<=n; i++){
for(int j=; j<=i; j++){
if(j == ) {dp1[i] = ;continue;}
if(check(dp1[j-], j-, j , i)) dp1[i] = j;
}
}
// dp2[i] ~ r[i]
int id = dp1[n];
while(id && num[id-] == '') id--;
dp1[n] = id; for(int i= dp1[n]; i<=n; i++) dp2[i] = n; for(int i=dp1[n]-; i>=; i--){
for(int j=i; j<dp1[n]; j++)
{
if(check(i,j,j+,dp2[j+])) dp2[i] = j;
}
} for(int i=dp2[]; i<n; ) {
r[i] = ;
i = dp2[i+];
}
for(int i=; i<=n; i++){
printf("%c", num[i]);
if(r[i] && i < n) printf(",");
}
printf("\n");
return ;
}
/*
13433723991416664857426899882522765651609851664619848674546418181426101583783039
134,3372,3991,4166,6485,74268,99882,522765,651609,851664,6198486,74546418,181426101,583783039
*/
P1415 拆分数列 DP的更多相关文章
- 洛谷P1415 拆分数列[序列DP 状态 打印]
题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...
- 洛谷 P1415 拆分数列 解题报告
拆分数列 题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数. 如果有多组解,则输出使得最后一个 ...
- luoguP1415 拆分数列 [dp]
题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时,字典序最大的解(即先要满足最后一个数最小:如果有多组解,则使得第一个数尽量大:如 ...
- 洛谷P1415 拆分数列(dp)
题目链接:传送门 题目: 题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输 ...
- 洛谷P1415 拆分数列
题目背景 [为了响应党中央勤节俭.反铺张的精神,题目背景描述故事部分略去^-^] 题目描述 给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数.如果有多组解,则输出使得最后一个数最小的同时 ...
- P1415 拆分数列
传送门 DP数列长度过大无法枚举,考虑DP设f1[i]储存以第i个字符为结尾时,的最后一个数最小时,这个数的开头的位置(很难想有木有)OK,状态有了,方程想一想就出来了:设$num[i][j]$为数列 ...
- [luoguP1415] 拆分数列(DP)
传送门 t(i,j)表示下标从i到j的数 d[i]表示以i结尾的最小的数的下标 d[i]=max(j) (1<=j<=i && t(d[j-1],j-1)<t(j,i ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- BZOJ2431:[HAOI2009]逆序对数列(DP,差分)
Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...
随机推荐
- the license has been canceled
ideal 的 注册码并没有失效,却显示这个信息 the license has been canceled 如果用的是Windows系统,在hosts文件添加下边的ip及映射 0.0.0.0 acc ...
- maven私服nexus上传第三方jar包以及下载
私服是一个特殊的远程仓库,它是架设在局域网内的仓库服务.私服代理广域网上的远程仓库,供局域网内的Maven用户使用.当Maven需要下载构建的使用,它先从私服请求,如果私服上没有的话,则从外部的远程仓 ...
- .net持续集成测试篇之Nunit常见断言
系列目录 Nunit测试基础之简单断言 在开始本篇之前需要补充一些内容,通过前面搭建Nunit测试环境我们知道要使一个方法成为单元测试方法首先要在此方法所在类加上TestFixture注解,并且在该方 ...
- 激活函数、正向传播、反向传播及softmax分类器,一篇就够了!
1. 深度学习有哪些应用 图像:图像识别.物体识别.图片美化.图片修复.目标检测. 自然语言处理:机器创作.个性化推荐.文本分类.翻译.自动纠错.情感分析. 数值预测.量化交易 2. 什么是神经网络 ...
- Java NIO学习系列七:Path、Files、AsynchronousFileChannel
相对于标准Java IO中通过File来指向文件和目录,Java NIO中提供了更丰富的类来支持对文件和目录的操作,不仅仅支持更多操作,还支持诸如异步读写等特性,本文我们就来学习一些Java NIO提 ...
- Handler 使用详解
极力推荐文章:欢迎收藏 Android 干货分享 阅读五分钟,每日十点,和您一起终身学习,这里是程序员Android 本篇文章主要介绍 Android 开发中的部分知识点,通过阅读本篇文章,您将收获以 ...
- ssm 搭建项目各项配置
首先配置 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&quo ...
- Okhttp3 网络请求框架与 Gson
Maven环境 : <dependency> <groupId>com.squareup.okhttp3</groupId> <artifactId>o ...
- Java枚举类型 enum
定义 An enum type is a special data type that enables for a variable to be a set of predefined constan ...
- Linux常用命令之权限管理
在linux中的每一个文件或目录都包含有访问权限,这些访问权限决定了谁能访问和如何访问这些文件和目录,这也让linux更安全.下面主要讲解下常用的权限命令chgrp,chmod,chown . 1.文 ...