题意

给定\(n\)个数,每次交换两个数,输出交换后的逆序数。

分析

  • 交换两个数只会影响到对应区间内的逆序数,具体为减少区间\([l+1,r-1]\)中比\(a[r]\)大的数的个数,增加比\(a[r]\)大的数的个数,减少比大的数的个数,\(a[l]\)增加比\(a[l]\)小的数的个数。
  • 转化为单点修改+查询区间值域个数,树套树。
  • 思路不难想,写完调了一年,注意几个点
    • 外层bit大小是的是序列长度n,不是离散化后的值域ns。
    • 数据不保证\(l<=r\)。
    • 注意相同元素。
    • 最后要判断\(a[l]\)和\(a[r]\)的大小关系,除去相等。

代码

#include <bits/stdc++.h>
using namespace std;
const int N=2e4+50;
int n,ns,m,a[N],l,r,tr[N*20],x[N],y[N],c1,c2;
struct Orz{
vector<int> a;
void init(){
a.clear();
}
int siz(){
return a.size();
}
void add(int x){
a.push_back(x);
}
void work(){
sort(a.begin(),a.end());
a.erase(unique(a.begin(),a.end()),a.end());
}
int idx(int v){
return lower_bound(a.begin(),a.end(),v)-a.begin()+1;
}
int val(int i){
return a[i-1];
}
}orz;
struct HJT{
#define mid (l+r)/2
int tot,sum[N*200],ls[N*200],rs[N*200];
void update(int &x,int l,int r,int v,int add){
if(!x){
x=++tot;
}
sum[x]+=add;
if(l<r){
if(v<=mid){
update(ls[x],l,mid,v,add);
}else{
update(rs[x],mid+1,r,v,add);
}
}
}
int query(int l,int r,int k){
if(k==0){
return 0;
}
if(r<=k){
int ans=0;
for(int i=1;i<=c1;i++){
ans-=sum[x[i]];
}
for(int i=1;i<=c2;i++){
ans+=sum[y[i]];
}
return ans;
}
if(k<=mid){
for(int i=1;i<=c1;i++){
x[i]=ls[x[i]];
}
for(int i=1;i<=c2;i++){
y[i]=ls[y[i]];
}
return query(l,mid,k);
}else{
int ans=0;
for(int i=1;i<=c1;i++){
ans-=sum[ls[x[i]]];
}
for(int i=1;i<=c2;i++){
ans+=sum[ls[y[i]]];
}
for(int i=1;i<=c1;i++){
x[i]=rs[x[i]];
}
for(int i=1;i<=c2;i++){
y[i]=rs[y[i]];
}
return ans+query(mid+1,r,k);
}
}
}ac;
struct BIT{
int lowbit(int x){
return x&(-x);
}
void modify(int i,int x){
int k=a[i];
while(i<=n){
ac.update(tr[i],1,ns,k,x);
i+=lowbit(i);
}
}
int query(int l,int r,int xi,int yi){
if(xi>yi){
return 0;
}
c1=c2=0;
for(int i=l-1;i;i-=lowbit(i)){
x[++c1]=tr[i];
}
for(int i=r;i;i-=lowbit(i)){
y[++c2]=tr[i];
}
int R=ac.query(1,ns,yi);
c1=c2=0;
for(int i=l-1;i;i-=lowbit(i)){
x[++c1]=tr[i];
}
for(int i=r;i;i-=lowbit(i)){
y[++c2]=tr[i];
}
int L=ac.query(1,ns,xi-1);
return R-L;
}
}bit;
int main(){
// freopen("in.txt","r",stdin);
scanf("%d",&n);
orz.init();
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
orz.add(a[i]);
}
orz.work();
ns=orz.siz();
int ans=0;
for(int i=1;i<=n;i++){
a[i]=orz.idx(a[i]);
bit.modify(i,1);
ans+=bit.query(1,i,a[i]+1,ns);
}
printf("%d\n",ans);
scanf("%d",&m);
for(int i=1;i<=m;i++){
scanf("%d%d",&l,&r);
if(l>r){
swap(l,r);
}
if(l==r){
printf("%d\n",ans);
continue;
}
if(r-l>=2){
int ta=bit.query(l+1,r-1,a[r]+1,ns);
int tb=bit.query(l+1,r-1,a[l]+1,ns);
int tc=bit.query(l+1,r-1,1,a[r]-1);
int td=bit.query(l+1,r-1,1,a[l]-1);
ans-=ta;
ans+=tc;
ans+=tb;
ans-=td;
}
if(a[l]<a[r]){
ans++;
}else if(a[l]>a[r]){
ans--;
}
bit.modify(l,-1);
bit.modify(r,-1);
swap(a[l],a[r]);
bit.modify(l,1);
bit.modify(r,1);
printf("%d\n",ans);
}
return 0;
}

bzoj2141_排队的更多相关文章

  1. BZOJ_2141_排队_树状数组+分块

    BZOJ2141_排队_树状数组+分块 Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家 乐和和.红星幼儿园的小朋友们排起了 ...

  2. C++ 事件驱动型银行排队模拟

    最近重拾之前半途而废的C++,恰好看到了<C++ 实现银行排队服务模拟>,但是没有实验楼的会员,看不到具体的实现,正好用来作为练习. 模拟的是银行的排队叫号系统,所有顾客以先来后到的顺序在 ...

  3. bzoj 2729: [HNOI2012]排队

    2729: [HNOI2012]排队 Time Limit: 10 Sec Memory Limit: 128 MB Description 某中学有 n 名男同学,m 名女同学和两名老师要排队参加体 ...

  4. bzoj 2141: 排队

    2141: 排队 Time Limit: 4 Sec Memory Limit: 259 MB Description 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我, ...

  5. 可重入锁 公平锁 读写锁、CLH队列、CLH队列锁、自旋锁、排队自旋锁、MCS锁、CLH锁

    1.可重入锁 如果锁具备可重入性,则称作为可重入锁. ========================================== (转)可重入和不可重入 2011-10-04 21:38 这 ...

  6. hdu 1872(看病要排队)(优先队列)

    看病要排队 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. 赴美工作常识(Part 6 - 绿卡排队)

    上一篇<赴美工作常识(Part 5 - 绿卡优先级)>解释完排队的优先级是怎么确定的,以及 PERM 和 I–140 表的意义,接下来就要解释一下队具体是怎么排的以及排到之后的 I–485 ...

  8. hdu 1873 看病要排队(优先级队列)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1873 题目大意: 三个医生看病,病人排队看病,病人有优先级,优先级高的提前看病,同样的优先级按先后.I ...

  9. 排队打饭 sdut 2443【最简单的贪心法应用举例】

    排队打饭 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 题目链接:http://acm.sdut.edu.cn/sdutoj/p ...

随机推荐

  1. RocketMQ中Broker的刷盘源码分析

    上一篇博客的最后简单提了下CommitLog的刷盘  [RocketMQ中Broker的消息存储源码分析] (这篇博客和上一篇有很大的联系) Broker的CommitLog刷盘会启动一个线程,不停地 ...

  2. 【Java例题】2.4求函数

    4.输入x,编程试求函数 y=sin(x^2)/(1-cosx)的值. 这里的"^"表示乘方. package study; import java.util.Scanner; p ...

  3. 死磕JVM之类中各部分的加载顺序

    话不多说,直接上代码: 1.通过new创建对象实例: 2.当对象中含有静态方法,且调用时: -- 调用父类静态方法: 总结: * 类中静态资源首次加载的时间是类中静态资源第一次被调用的时候或者该类的对 ...

  4. Redis——发布和订阅

    发布与订阅(又称pub/sub),订阅者(listener)负责订阅频道(channel),发送者(publisher)负责向频道发送二进制字符串消息(binary string message).每 ...

  5. android ——活动的生命周期

    在其生命周期内,activity在运行.暂停和停止三种可能的状态间进行转换,不同状态之间互相转换的时候的调用不同的方法,重写这些方法就能在活动切换,被销毁时保存或传输数据,在被启动.被切换出来时接收数 ...

  6. 【CodeForces - 1200A】Hotelier(水题、模拟)

    Hotelier 直接翻译了 Descriptions Amugae的酒店由10人组成10客房.房间从0开始编号0到99 从左到右. 酒店有两个入口 - 一个来自左端,另一个来自右端.当顾客通过左入口 ...

  7. pycharm的安装配置及思维导图

    1.1 计算机基础知识 主板:人的骨架,用于扩展设备的 cpu:人的大脑,用于计算和逻辑处理的 硬盘:存储数据(永久存储) 电源:人的心脏 内存:存储数据(临时存储) 断电即消失 操作系统 xp wi ...

  8. javaScript基础-02 javascript表达式和运算符

    一.原始表达式 原始表达式是表达式的最小单位,不再包含其他表达式,包含常量,直接量,关键字和变量. 二.对象和数组的初始化表达式 对象和数组初始化表达式实际上是一个新创建的对象和数组. 三.函数表达式 ...

  9. (三)c#Winform自定义控件-有图标的按钮

    前提 入行已经7,8年了,一直想做一套漂亮点的自定义控件,于是就有了本系列文章. 开源地址:https://gitee.com/kwwwvagaa/net_winform_custom_control ...

  10. Golang 解决 Iris 被墙的依赖包

    使用 Golang 的 Iris web 框架时,用 go get github.com/kataras/iris 命令久久无法下载,最后还报一堆错误. 使用  GOPROXY 可解决问题,也可参考如 ...