pandas 学习 第5篇:DataFrame - 访问数据框
数据框是用于存储数据的二维结构,分为行和列,一行和一列的交叉位置是一个cell,该cell的位置是由行索引和列索引共同确定的。可以通过at/iat,或loc/iloc属性来访问数据框的元素,该属性后跟一个中括号:[row,col],中括号内 row表示行索引或行标签,col表示列索引或列标签。如果省略row, 那么row维度使用“:”代替,格式是 [ :, col] ,表示访问所有行的特定列;如果省略col ,格式是[row],表示访问特定行的所有列。
有以下数据框对象df,其数据和索引如下:
year state pop
one 2000 Ohio 1.5
two 2001 Ohio 1.7
three 2002 Ohio 3.6
four 2001 Nevada 2.4
five 2002 Nevada 2.9
一,索引单个cell
通过元素的行和列索引对来访问单个cell,at 和 iat 属性只能访问当个cell,区别是at可以使用字符串和整数,而iat只能使用整数。
at 和 iat 的格式是:[row, column], 第一个维度是行索引,第二个维度是列索引。
通过iat属性(设置下标)来访问单个cell:
>>> df.iat[1,2]
1.7
通过at属性(设置标签)来访问单个cell:
>>> df.at['two','pop']
1.7
二,通过位置来访问多个元素
loc 和 iloc 属性可以访问多个cell,区别是loc可以使用标签和布尔(掩码)数组,不能使用整数位置(整数代表元素的位置),而iloc只能使用整数位置。
loc 和 iloc的格式是:
- [row] 访问单行,包括所有列
- [row, column] 访问有row 和 column 确定的元素
.loc[]
主要基于标签,但也可以与布尔数组一起使用。在格式 .loc[row,col] 中,row和col允许的输入有:
- label:单个标签,表示行标签,索引的数据是一行
- [label]:标签数组,表示行标签数组,索引的数据是多行
- ['a':'f'] 或 ['a':'f']:索引切片
- [True, False, True]:和axis等长的布尔数组
举个例子,分别使用iloc 和loc来访问数组的多个元素:
>>> df.iloc[[0,1],[0,2]]
year pop
one 2000 1.5
two 2001 1.7
>>> df.loc[['one','two'],['year','pop']]
year pop
one 2000 1.5
two 2001 1.7
三,访问整列的数据
直接通过列名来访问DataFrame的数据,选择特定列的所有数据行,有两种格式是:
- df['col'] 单列索引方式
- df.col 属性方式
- df[['col1','col2']] 列索引数组方式
1,属性方式 和单列索引方式
对于属性方式和单列索引方式,只能用于访问单列,返回的是Series对象:
df['state']
df.state
属性方式是指:列名作为DataFrame对象的属性,通过 . 号引用列名来访问一列的值
单列索引方式是指:列名作为DataFrame对象的索引,通过[] 号索引列来访问一列的值
2,列索引数组方式
对于列索引数组方式,一次访问多列,返回的对象是DataFrame类型
df[['year','state']]
3,对序列进行查询
对于单列索引和属性方式,返回的结果是一个序列,因此,可以通过[idx]来访问序列中的元素,[]中的索引idx是行索引,也就是说,使用 .col[row] 或 [col][row] 来访问单个cell,举个列子:
>>> df.year['one']
2000
>>> df['year']['one']
2000
四,索引数组
索引数组是指DataFrame使用数组作为索引,索引数组可以是行标签、列标签,或者行索引、列索引,也可以是布尔(掩码)索引数组。
1,列标签构成的索引数组
数据框对象可以使用loc和列标签来访问数据,例如,省略row维度,选择state和pop列的所有数据行:
>>> df.loc[:,['state','pop']]
state pop
one Ohio 1.5
two Ohio 1.7
three Ohio 3.6
four Nevada 2.4
five Nevada 2.9
2,掩码索引数组
掩码索引数组是由True和False构成的数组,在特定的轴(维度)上,维度的长度和掩码索引的长度相同,选择True对应的索引,忽略False对应的索引。
举个例子,省略row维度的索引,由于该数据框由三列,可以把year和state列对应的掩码设置为True,把pop列对应的掩码设置为False。
>>> df.columns
Index(['year', 'state', 'pop'], dtype='object')
>>> df.loc[:,[True,True,False]]
year state
one 2000 Ohio
two 2001 Ohio
three 2002 Ohio
four 2001 Nevada
five 2002 Nevada
序列具有矢量化操作的特性,当选择某一列时,可以通过逻辑运算得出掩码索引数组:
>>> df['pop']>=2
one False
two False
three True
four True
five True
Name: pop, dtype: bool
>>> df.loc[df['pop']>=2]
year state pop
three 2002 Ohio 3.6
four 2001 Nevada 2.4
five 2002 Nevada 2.9
五,遍历DataFrame
使用iterrows() 遍历数据框,iterrows()返回值为元组(index,row) ,每次迭代返回一行数据:
for index,row in df.iterrows():
print(index,row)
使用itertuples()遍历数据框,返回的是命名元组:
DataFrame.itertuples(self, index=True, name='Pandas')
使用items()或 iteritems()遍历数据框,返回值为元组(column,Series),每次迭代返回一列数据:
>>> for col_name,col in df.items():
... print(col_name,col)
参考文档:
pandas 学习 第5篇:DataFrame - 访问数据框的更多相关文章
- 【转】Pandas学习笔记(二)选择数据
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- Pandas 学习 第9篇:DataFrame - 数据的输入输出
常用的数据存储介质是数据库和csv文件,pandas模块包含了相应的API对数据进行输入和输出: 对于格式化的平面文件:read_table() 对于csv文件:read_csv().to_csv() ...
- pandas 学习 第7篇:DataFrame - 数据处理(应用、操作索引、重命名、合并)
DataFrame的这些操作和Series很相似,这里简单介绍一下. 一,应用和应用映射 apply()函数对每个轴应用一个函数,applymap()函数对每个元素应用一个函数: DataFrame. ...
- pandas 学习 第14篇:索引和选择数据
数据框和序列结构中都有轴标签,轴标签的信息存储在Index对象中,轴标签的最重要的作用是: 唯一标识数据,用于定位数据 用于数据对齐 获取和设置数据集的子集. 本文重点关注如何对序列(Series)和 ...
- (数据科学学习手札06)Python在数据框操作上的总结(初级篇)
数据框(Dataframe)作为一种十分标准的数据结构,是数据分析中最常用的数据结构,在Python和R中各有对数据框的不同定义和操作. Python 本文涉及Python数据框,为了更好的视觉效果, ...
- pandas.DataFrame——pd数据框的简单认识、存csv文件
接着前天的豆瓣书单信息爬取,这一篇文章看一下利用pandas完成对数据的存储. 回想一下我们当时在最后得到了六个列表:img_urls, titles, ratings, authors, detai ...
- pandas 学习 第3篇:Series - 数据处理(应用、分组、滚动、扩展、指数加权移动平均)
序列内置一些函数,用于循环对序列的元素执行操作. 一,应用和转换函数 应用apply 对序列的各个元素应用函数: Series.apply(self, func, convert_dtype=True ...
- pandas 学习 第1篇:pandas基础 - 数据结构和数据类型
pandas是基于NumPy构建的模块,含有使数据分析更快更简单的操作工具和数据结构,是数据分析必不可少的五个包之一.pandas包含序列Series和数据框DataFrame两种最主要数据结构,索引 ...
- (数据科学学习手札07)R在数据框操作上方法的总结(初级篇)
上篇我们了解了Python中pandas内封装的关于数据框的常用操作方法,而作为专为数据科学而生的一门语言,R在数据框的操作上则更为丰富精彩,本篇就R处理数据框的常用方法进行总结: 1.数据框的生成 ...
随机推荐
- tensorflow基础-数据类型
一:tensorflow中的计算定义和执行 首先,对于tensorflow来说,最重要的概念就是图(Graph)和会话(Session),tensorflow的计算思想是:以图的形式来表示模型,表示和 ...
- Think in Java 笔记(chapter1-7)
Content Chapter 1:对象导论 Chapter 2:一切都是对象 Chapter 3:操作符 Chapter 4:控制执行流程 Chapter 5:初始化与清理 Chapter 6:访问 ...
- linux用户组相关,密码相关,文件操作,和启动级别
一.开机重启和用户切换 注意,当关机或重启前,都应当先执行一下sync指令,把内存的数据写入磁盘,防止数据丢失. shutdown命令 shutdown -h now :立即关机 shutdown - ...
- redis启动错误: Warning: no config file specified, using the default config. In order to specify a config
redis启动错误: Warning: no config file specified, using the default config. In order to specify a config ...
- Idea中新建yml不显示叶子形状的原因
IntelliJ IDEA 2019.2.4 x64 (版本),不显示叶子形状,导致写配置无法自动提示(自动提示请安装插件)Spring Assistant 先看一下Editor--->File ...
- PHP目前常见的五大运行模式
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/xujingzhong0077/artic ...
- ETCD:实验特性和APIs
原文地址:Experimental features and APIs 大多数情况下,etcd项目是稳定的,但我们仍在快速发展! 我们相信快速发布理念. 我们希望获得有关仍在开发和稳定中的功能的早期反 ...
- Python 从入门到进阶之路(六)
之前的文章我们简单介绍了一下 Python 的面向对象,本篇文章我们来看一下 Python 中异常处理. 我们在写程序时,有可能会出现程序报错,但是我们想绕过这个错误执行操作.即使我们的程序写的没问题 ...
- Python中常见的8种数据结构的实现方法(建议收藏)
数据结构作为计算机基础的必修内容,也是很多大型互联网企业面试的必考题.可想而知,它在计算机领域的重要性. 然而很多计算机专业的同学,都仅仅是了解数据结构的相关理论,却无法用代码实现各种数据结构. 栈 ...
- audio标签以及audio对象
一.audio标签 简单语法 <audio src="音频链接"></audio> 属性 属性 值 描述 autoplay 如果出现该属性,则音频在就绪后马 ...