King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. The luxurious celebration will start on his birthday and King Arthur decides to let fate tell when to stop it. Every day he will toss a coin which has probability p that it comes up heads and 1-p up tails. The celebration will be on going until the coin has come up heads for K times. Moreover, the king also decides to spend 1 thousand coins on the first day's celebration, 3 thousand coins on the second day's, 5 thousand coins on the third day's ... The cost of next day will always be 2 thousand coins more than the previous one's. Can you tell the minister how many days the celebration is expected to last and how many coins the celebration is expected to cost?

Input

The input consists of several test cases.
For every case, there is a line with an integer K ( 0 < K ≤ 1000 ) and a real number p (0.1 ≤ p ≤ 1).
Input ends with a single zero.

Output

For each case, print two number -- the expected number of days
and the expected number of coins (in thousand), with the fraction
rounded to 3 decimal places.

Sample Input

1 1
1 0.5
0

Sample Output

1.000 1.000
2.000 6.000

OJ-ID:
poj-3682

author:
Caution_X

date of submission:
20191031

tags:
math

description modelling:
有一个人每天抛一次硬币,直到抛出了K次正面向上才会停止,第i天的金钱花费是2*i-1,现在输入
K,问花费金钱的数学期望

major steps to solve it:
设E[i],F[i],E[i]表示抛出i次正面向上时的期望天数,F[i]表示第i天的花费金钱数学期望
(1)E[i]=1/p+W[i-1]
(2)F[i] = p*(F[i]-1 + 2 * E[i] -1)/*第i天正好得到正面向上*/ + (1-p)*(F[i] + 2 * (E[i]+1) -1) /*第i天没有得到正面向上*/

AC code:

#include <stdio.h>

double E[];
double F[]; int main()
{
int i,j,n;
double q,p;
while()
{
scanf("%d",&n);
if (n==) break;
scanf("%lf",&p);
E[]=;
F[]=;
for (i=;i<=n;i++)
{
E[i]=/p+E[i-];
F[i]=F[i-]+*E[i-]-*E[i]+(+*E[i])/p;
}
printf("%.3f %.3f\n",E[n],F[n]);
}
return ;
}

poj-3682 King Arthur's Birthday Celebration的更多相关文章

  1. poj 3682 King Arthur's Birthday Celebration (期望dp)

    传送门 解题思路 第一问比较简单,设$f[i]​$表示扔了$i​$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1​$,意思就是$i​$次正面向上可以 ...

  2. POJ3682 King Arthur's Birthday Celebration

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  3. 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】

    题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]=  c(i-1,k-1)*p^k*(1-p)^( ...

  4. King Arthur's Birthday Celebration

    每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...

  5. POJ3682;King Arthur's Birthday Celebration(期望)

    传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...

  6. [POJ3682]King Arthur's Birthday Celebration[期望DP]

    也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...

  7. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  8. hdu4337 King Arthur's Knights

    King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...

  9. hdu 4337 King Arthur's Knights (Hamilton)

    King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Oth ...

随机推荐

  1. Linux下的find命令2

    :续linux下的find命令 Linux/Unix下非常有用的find命令的用法 功能简述:find(查找)主要沿着文件层次(目录)结构依次向下遍历,匹配符合条件的文件,可以附带执行相应的操作选项, ...

  2. pyenv环境部署

    pyenv环境部署pyenv安装使用git[root@kang ~]# yum install git -y python安装依赖yum -y install gcc make patch gdbm- ...

  3. [考试反思]1112csp-s模拟测试112:二返

    连着两场... 信心赛.但是题锅了,我也锅了. 然后Day2就不用考了. T1没开够long long.(a+b+c+0ll)与(0ll+a+b+c)还是有一点区别的. T2出题人用Windows出数 ...

  4. [译]Vulkan教程(20)重建交换链

    [译]Vulkan教程(20)重建交换链 Swap chain recreation 重建交换链 Introduction 入门 The application we have now success ...

  5. 当面试官要你介绍一下MQ时,该怎么回答?

    一.为什么要使用MQ消息中间件? 一个用消息队列的人,不知道为啥用,有点尴尬.没有复习这点,很容易被问蒙,然后就开始胡扯了. 回答:这个问题,咱只答三个最主要的应用场景,不可否认还有其他的,但是只答三 ...

  6. Cypress 之 常用API

    .visit() 访问一个远程URL.>>详情参考 Cypress 之 cy.visit() cy.visit(url) cy.visit(url, options) cy.visit(o ...

  7. 10分钟彻底理解Redis的持久化机制:RDB和AOF

    作者:张君鸿 juejin.im/post/5d09a9ff51882577eb133aa9 什么是Redis持久化? Redis作为一个键值对内存数据库(NoSQL),数据都存储在内存当中,在处理客 ...

  8. ASP.NET Core - 基于IHttpContextAccessor实现系统级别身份标识

    问题引入: 通过[ASP.NET Core[源码分析篇] - 认证]这篇文章中,我们知道当请求通过认证模块时,会给当前的HttpContext赋予当前用户身份标识,我们在需要授权的控制器中打上[Aut ...

  9. jsp日期显示格式化-<fmt:formatDate

    在处理从数据库读取到的日期的时候发现,视图层通过EL表达式获取的日期格式跟预期不符 为格林威治时间(GMT)格式 解决: 1.引入JSTL标签 <%@ taglib prefix="f ...

  10. 动态SQL与变量绑定

    有时候动态sql需要进行变量的赋值,这个时候就需要调用系统的存储过程sp_executesql了.使用中还是有些注意事项,代码如下: --字符型字段需声明为NVARCHAR类型 ),) --动态SQL ...