[FJOI 2016] 神秘数
[题目链接]
https://www.lydsy.com/JudgeOnline/problem.php?id=4408
[算法]
首先考虑一组询问怎样做 :
将数组按升序排序 , 假设我们现在可以表示出[1 , x]范围的数 , 加入一个数Ai , 则Ai必须满足 :
Ai <= x + 1
若不满足 , 答案即为(x + 1)
如何处理多组询问呢?
考虑建立可持久化线段树 , 维护一段区间中小于或等于某个数的数的权值和
设当前答案为ans
在可持久化线段树中查询区间[l , r]中 <= ans的数的和x
若x >= ans , 则ans = x + 1
否则答案为(ans + 1)
时间复杂度 : O(NlogN ^ 2)
[代码]
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
const int N = 1e5 + ; int n , m;
int a[N] , rt[N]; struct Presitent_Segment_Tree
{
int sz;
int lc[N * ] , rc[N * ] , sum[N * ];
Presitent_Segment_Tree()
{
sz = ;
}
inline void modify(int &now , int old , int l , int r , int x , int value)
{
now = ++sz;
lc[now] = lc[old] , rc[now] = rc[old];
sum[now] = sum[old] + value;
if (l == r) return;
int mid = (l + r) >> ;
if (mid >= x) modify(lc[now] , lc[old] , l , mid , x , value);
else modify(rc[now] , rc[old] , mid + , r , x , value);
}
inline int query(int rt1 , int rt2 , int l , int r , int ql , int qr)
{
if (l == ql && r == qr)
return sum[rt1] - sum[rt2];
int mid = (l + r) >> ;
if (mid >= qr) return query(lc[rt1] , lc[rt2] , l , mid , ql , qr);
else if (mid + <= ql) return query(rc[rt1] , rc[rt2] , mid + , r , ql , qr);
else return query(lc[rt1] , lc[rt2] , l , mid , ql , mid) + query(rc[rt1] , rc[rt2] , mid + , r , mid + , qr);
}
} PST; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
} int main()
{ read(n);
for (int i = ; i <= n; ++i) read(a[i]);
for (int i = ; i <= n; ++i) PST.modify(rt[i] , rt[i - ] , , (int)1e9 , a[i] , a[i]);
read(m);
while (m--)
{
int l , r;
read(l); read(r);
int ans = , res = ;
while (true)
{
res = PST.query(rt[r] , rt[l - ] , , (int)1e9 , , ans);
if (res >= ans) ans = res + ;
else break;
}
printf("%d\n" , ans);
} return ; }
[FJOI 2016] 神秘数的更多相关文章
- [BZOJ4408][Fjoi 2016]神秘数
[BZOJ4408][Fjoi 2016]神秘数 试题描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1+13 = 1 ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- BZOJ 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 464 Solved: 281[Submit][Status ...
- BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...
- 【BZOJ4408】[Fjoi 2016]神秘数 主席树神题
[BZOJ4408][Fjoi 2016]神秘数 Description 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 12 = 1 ...
- 4408: [Fjoi 2016]神秘数
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 452 Solved: 273 [Submit][Stat ...
- BZOJ 4408: [Fjoi 2016]神秘数 [主席树]
传送门 题意: 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},8无法表示为集合S的子集的和,故集合S的神秘数为8.现给定n个正整数a[1]. ...
- ●BZOJ 4408 [Fjoi 2016]神秘数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 题解: 主席树 首先,对于一些数来说, 如果可以我们可以使得其中的某些数能够拼出 1- ...
- BZOJ4408&4299[Fjoi 2016]神秘数——主席树
题目描述 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1,4,13},1 = 1 2 = 1+1 3 = 1+1+1 4 = 4 5 = 4+1 6 = ...
- bzoj 4408: [Fjoi 2016]神秘数 数学 可持久化线段树 主席树
https://www.lydsy.com/JudgeOnline/problem.php?id=4299 一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数.例如S={1,1,1 ...
随机推荐
- 关于查看python的trace的方法
lptrace本质上是基于GDB的,进入到进程内存空间,然后执行了一段python指令把当时的trace给print出来 使用工具:https://github.com/khamidou/lptrac ...
- 【转载】面向切面编程(AOP)学习
看到这篇文章,学习一下:http://www.ciaoshen.com/2016/10/28/aop/ 想理清一下从“动态代理”,到 “注释”,到“面向切面编程”这么一个技术演进的脉络. 只想讲清楚两 ...
- Odoo10尝鲜: 采购协议
Odoo10 对 call for bid 进行了 改进, 作为 '采购协议' 进入 采购, 选择 'Purchase agreement' 在 agreement 列表 建立新的 协议 选择 协议类 ...
- Odoo calendar 提醒器
Odoo calendar 提供了一个提醒功能,它包含邮件通知以及web client弹窗功能 创建日历事件的时候,可以设置提醒器 Meeting [ calendar.event ] ...
- Android——动画的分类
Android包含三种动画:View Animation, Drawable Animation, Property Animation(Android 3.0新引入). 1.View Animati ...
- 【环境配置】Linux的经常使用命令
系统信息 arch 显示机器的处理器架构uname -m 显示机器的处理器架构uname -r 显示正在使用的内核版本号 dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI) ...
- Libx264 编码错误 Input picture width(320) is greater than stride (0)
Ffmpeg libx264编码出现 Input picture width(320) is greater than stride (0),问题出在视频格式不正确. libx264 编码要求输入源的 ...
- VS2012+Win7站点公布具体步骤
VS2012+Win7站点公布详细步骤 本机环境: 本文分三个部分介绍Web项目公布的常规方法,大神级别能够略过,主要是为了方便一些刚開始学习的人. 第一部分:VS2012把项目公布到文件系统. 第二 ...
- Logistic Regression 笔记与理解
Logistic Regression 笔记与理解 Logistic Regression Hypothesis 记为 H(theta) H(theta)=g(z) 当中g(z),是一个叫做Logis ...
- NS3网络仿真(11): ARP
快乐虾 http://blog.csdn.net/lights_joy/ 欢迎转载,但请保留作者信息 ARP(Address ResolutionProtocol,地址解析协议)协议的基本功能就是通过 ...