题意:给定 n 个分数,然后让你去年 m 个分数,使得把剩下的所有的分子和分母都相加的分数最大。

析:这个题并不是分子越大最后结果就越大,也不是整个分数越大,最后结果就越大的,我们可以反过来理解,要去掉 m 个分数,那么就是要选 n-m个分数,

那么就是 sigma(分子) / sigma(分母) 尽量大,那么最大是多大啊?这个我们可以通过二分来解决,也就是sigma(分子) / sigma(分母) >= x,

因为分子和分母都是正数,所以可以得到 sigma(分子) - sigma(分母)* x  >= 0,也就是 sigma(分子 - x * 分母) >= 0(前n-m项),我们就可以按这个进行排序,

看看前 n-m 项成不成立。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#define debug() puts("++++");
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e3 + 10;
const int mod = 1e9 + 7;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, 1, 0, -1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
}
double c; struct Node{
double a, b;
bool operator < (const Node &p) const{
return a - b * c > p.a - p.b * c;
}
};
Node a[maxn]; bool judge(){
sort(a, a + n);
double ans = 0;
for(int i = 0; i < n-m; ++i) ans += a[i].a- a[i].b * c;
return ans >= 0.0;
} double solve(){
double l = 0, r = INF;
for(int i = 0; i < 100; ++i){
c = (l+r) / 2;
if(judge()) l = c;
else r = c;
}
return l;
} int main(){
while(scanf("%d %d", &n, &m) == 2 && n+m){
for(int i = 0; i < n ; ++i) scanf("%lf", &a[i].a);
for(int i = 0; i < n ; ++i) scanf("%lf", &a[i].b);
printf("%.f\n", solve()*100);
}
return 0;
}

POJ 2976 Dropping tests (二分+贪心)的更多相关文章

  1. POJ 2976 Dropping tests [二分]

    1.题意:同poj3111,给出一组N个有价值a,重量b的物品,问去除K个之后,剩下的物品的平均值最大能取到多少? 2.分析:二分平均值,注意是去除K个,也就是选取N-K个 3.代码: # inclu ...

  2. 二分算法的应用——最大化平均值 POJ 2976 Dropping tests

    最大化平均值 有n个物品的重量和价值分别wi 和 vi.从中选出 k 个物品使得 单位重量 的价值最大. 限制条件: <= k <= n <= ^ <= w_i <= v ...

  3. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  4. POJ 2976 Dropping tests 【01分数规划+二分】

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  5. POJ 2976 Dropping tests 01分数规划 模板

    Dropping tests   Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6373   Accepted: 2198 ...

  6. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  7. POJ 2976 Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:17069   Accepted: 5925 De ...

  8. POJ 2976 Dropping tests (0/1分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4654   Accepted: 1587 De ...

  9. Poj 2976 Dropping tests(01分数规划 牛顿迭代)

    Dropping tests Time Limit: 1000MS Memory Limit: 65536K Description In a certain course, you take n t ...

随机推荐

  1. ZOJ 3502 Contest <状态压缩 概率 DP>

    链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3502 #include <iostream> #incl ...

  2. Mybatis之Mapper动态代理

    一.什么是Mapper的动态代理 采用Mapper动态代理方法只需要编写相应的Mapper接口(相当于Dao接口),那么Mybatis框架根据接口定义创建接口的动态代理对象,代理对象的方法体同Dao接 ...

  3. sql中decode()重要函数使用

    decode()函数简介: 主要作用:将查询结果翻译成其他值(即以其他形式表现出来,以下举例说明): 使用方法: Select decode(columnname,值1,翻译值1,值2,翻译值2,.. ...

  4. 使用服务端的临时密钥,不依赖阿里js的putFIle--》阿里oss

    <!DOCTYPE html> <html lang='en'> <head> <meta charset='UTF-8'> <title> ...

  5. me12里更改信息记录的净价和有效价格,以及信息记录的条件价格

    转自 http://blog.csdn.net/zeewjj/article/details/7941525REPORT ztest. DATA:l_kbetr LIKE konp-kbetr.l_k ...

  6. 友盟分享到微信的几点备忘(IOS)

    1.下载最新的友盟分享版本,参考友盟官方的demo 2.注册微信开放平台用户,不是公众平台,注册应用 3.参考文档和demo,加入sdk包和相应的lib 4.在plist加入URL types.URL ...

  7. Flask中的内置session

    Flask中的Session非常的奇怪,他会将你的SessionID存放在客户端的Cookie中,使用起来也非常的奇怪 1. Flask 中 session 是需要 secret_key 的 from ...

  8. mysql服务突然不能启动

    mysql之前一直用的好好的,今天突然不能启动.前几天改过my.ini文件,在[mysqld]下添加了default-character-set=utf8.查看日志发现是添加的那句话的错误,删除.并且 ...

  9. <算法导论>高级数据结构--以我的角度看B树(Balanced-Tree)的建增删查

    题外话:在博客园看了几篇关于B树的博文确实很有帮助,但是也看到有一些Funny的博文- -比如拿二叉树堂(BinaryTree)而皇之写上B树的帽子. 好了题归正传,B树(Balanced-Tree) ...

  10. 维特比算法(Viterbi)

    维特比算法(Viterbi) 维特比算法 编辑 维特比算法是一种动态规划算法用于寻找最有可能产生观测事件序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中.术语“维特比路 ...