洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列
题目描述
对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?
输入输出格式
输入格式:
第一行为两个整数n,k。
输出格式:
写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。
输入输出样例
4 1
3
说明
样例说明:
下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
测试数据范围
30%的数据 n<=12
100%的数据 n<=1000,k<=1000
/*
dp[i,j]表示前i个数,逆序对数为j的方案数
我们目前要填入第i个数,第i个数的无论在哪一个位置可以保证前面的数都比他小所以并且填在第k个位置增加的逆序对个数为i-k,0<=k<=i-1
得:dp[i,j]=dp[i-1,j]+dp[i-1,j-1]+dp[i-1,j-2]+..+dp[i-1,j-i+1]
又因为dp[i,j-1]=dp[i-1,j-2]+..+dp[i-1,j-i];
所以dp[i,j]=dp[i,j-1]+dp[i-1,j]-dp[i-1,j-i];
这样O(n^2)就可以A了,不过原题好像想让我们用滚动数组优化一下,看来数据太水
*/
#include<iostream>
#include<cstdio>
using namespace std;
#define mod 10000
int n,k,dp[][];
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)dp[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<=k;j++){
if(j>=i)dp[i][j]=(dp[i-][j]+dp[i][j-]-dp[i-][j-i]+mod)%mod;
else dp[i][j]=(dp[i][j-]+dp[i-][j])%mod;
}
printf("%d",dp[n][k]);
}
洛谷P2513 [HAOI2009]逆序对数列的更多相关文章
- 【洛谷P2513】逆序对数列
前缀和.滚动数组优化dp f[i][j]表示前i个数,逆序对数为j的方案数 我们知道,在第k个位置放第i个数,单步得到的逆序对数为i-k 则在前i个数,最多能产生的逆序对数为i个,最少0个,均可转移到 ...
- P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...
- [题解] P2513 [HAOI2009]逆序对数列
动态规划,卡常数 题目地址 设\(F[X][Y]\)代表长度为\(X\)的序列,存在\(Y\)组逆序对的方案数量. 考虑\(F[X][i]\)向\(F[X+1][i]\)转移: 把数字\(X+1\)添 ...
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
随机推荐
- sudo -i和sudo -s
sudo -i,加载用户变量,并跳转到目标用户home目录:sudo -s,不加载用户变量,不跳转目录: sudo : 暂时切换到超级用户模式以执行超级用户权限,提示输入密码时该密码为当前用户的密码, ...
- 《CSS权威指南(第三版)》---第二章 选择器
本章的主要内容是,怎么获取文档中的元素给予渲染: 1.元素选择器: 2.ID选择器: 3.CLSSS选择器: 4.通配选择器:*; 5.属性选择器:selector[] 6.部分属性选择器: sele ...
- curl的安装与使用
linux 下的curl扩展安装,记录一下(发现网上好多抄袭的也不检测一下能不能用) 1.下载curl安装包: https://curl.haxx.se/download.html 2.解压: 如 t ...
- 介绍 Java 的内存泄漏
java最明显的一个优势就是它的内存管理机制.你只需简单创建对象,java的垃圾回收机制负责分配和释放内存.然而情况并不像想像的那么简单,因为在Java应用中经常发生内存泄漏.脚本代码 本教程演示了什 ...
- Android Studio 字体大小和背景色的设置
豆绿色的RGB值:#C7EDCC 1.打开Android Studio——>Ctrl+Alt+s 或者 File——>Settings 2.在弹窗中选中“Colors&Fonts” ...
- Sysctl命令及linux内核参数调整
一.Sysctl命令用来配置与显示在/proc/sys目录中的内核参数.如果想使参数长期保存,可以通过编辑/etc/sysctl.conf文件来实现. 命令格式: sysctl [-n ...
- <C++>友元与虚函数的组合
为类重载<<与>>这两个运算符时,重载函数必须为该类的友元函数. 当友元不能被继承,故不能当作虚函数,无法使用多态. 可以用以下结构实现友元与虚函数的组合. class bas ...
- POJ3107Godfather(求树的重心裸题)
Last years Chicago was full of gangster fights and strange murders. The chief of the police got real ...
- POJ3468 A Simple Problem with Integers(数状数组||区间修改的RMQ问题)
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...
- storm--chuanzhiboke
Storm里面有7种类型的stream grouping 1. Shuffle Grouping: 随机分组, 随机派发stream里面的tuple,保证每个bolt接收到的tuple数目大致相同. ...