P2513 [HAOI2009]逆序对数列

题目描述

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

输入输出格式

输入格式:

第一行为两个整数n,k。

输出格式:

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

输入输出样例

输入样例#1:

4 1
输出样例#1:

3

说明

样例说明:

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;

测试数据范围

30%的数据 n<=12

100%的数据 n<=1000,k<=1000

/*
dp[i,j]表示前i个数,逆序对数为j的方案数
我们目前要填入第i个数,第i个数的无论在哪一个位置可以保证前面的数都比他小所以并且填在第k个位置增加的逆序对个数为i-k,0<=k<=i-1
得:dp[i,j]=dp[i-1,j]+dp[i-1,j-1]+dp[i-1,j-2]+..+dp[i-1,j-i+1]
又因为dp[i,j-1]=dp[i-1,j-2]+..+dp[i-1,j-i];
所以dp[i,j]=dp[i,j-1]+dp[i-1,j]-dp[i-1,j-i];
这样O(n^2)就可以A了,不过原题好像想让我们用滚动数组优化一下,看来数据太水
*/
#include<iostream>
#include<cstdio>
using namespace std;
#define mod 10000
int n,k,dp[][];
int main(){
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)dp[i][]=;
for(int i=;i<=n;i++)
for(int j=;j<=k;j++){
if(j>=i)dp[i][j]=(dp[i-][j]+dp[i][j-]-dp[i-][j-i]+mod)%mod;
else dp[i][j]=(dp[i][j-]+dp[i-][j])%mod;
}
printf("%d",dp[n][k]);
}

洛谷P2513 [HAOI2009]逆序对数列的更多相关文章

  1. 【洛谷P2513】逆序对数列

    前缀和.滚动数组优化dp f[i][j]表示前i个数,逆序对数为j的方案数 我们知道,在第k个位置放第i个数,单步得到的逆序对数为i-k 则在前i个数,最多能产生的逆序对数为i个,最少0个,均可转移到 ...

  2. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  3. [题解] P2513 [HAOI2009]逆序对数列

    动态规划,卡常数 题目地址 设\(F[X][Y]\)代表长度为\(X\)的序列,存在\(Y\)组逆序对的方案数量. 考虑\(F[X][i]\)向\(F[X+1][i]\)转移: 把数字\(X+1\)添 ...

  4. bzoj2431:[HAOI2009]逆序对数列

    单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...

  5. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  6. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  7. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  8. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  9. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

随机推荐

  1. 【Java线程】锁机制:synchronized、Lock、Condition(转)

    原文地址 1.synchronized 把代码块声明为 synchronized,有两个重要后果,通常是指该代码具有 原子性(atomicity)和 可见性(visibility). 1.1 原子性 ...

  2. 单机部署tomcat的shell脚本

    单机部署tomcat的shell脚本,来自网络,自己需要时要根据自己的需求改动. #!/bin/sh # ############################################### ...

  3. Java for LeetCode 082 Remove Duplicates from Sorted List II

    Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numb ...

  4. [2018-11-27]2018年12月1日宁波dotnet社区线下活动

    离上次活动,转眼又过了一个月,幸得各路大神支持,于本周六(12月1日),宁波dotnet社区的线下分享活动又来啦! 活动嘉宾及主题 董斌辉 2015-2019年微软全球最有价值专家(.NET方向) 2 ...

  5. debian7 amd64版本添加对x86包的支持

    dpkg --add-architecture i386apt-get updateapt-get install ia32-libs ia32-libs-gtk

  6. poj The Settlers of Catan( 求图中的最长路 小数据量 暴力dfs搜索(递归回溯))

    The Settlers of Catan Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1123   Accepted: ...

  7. HTML5响应式模版Mocha

    HTML5响应式模版Mocha,经典,html5,蓝色,扁平,HTML5响应式模版Mocha是一款宽屏大气的HTML5网站展示模板. http://www.huiyi8.com/moban/

  8. POJ 2409 Let it Bead:置换群 Polya定理

    题目链接:http://poj.org/problem?id=2409 题意: 有一串n个珠子穿起来的项链,你有k种颜色来给每一个珠子染色. 问你染色后有多少种不同的项链. 注:“不同”的概念是指无论 ...

  9. Servlet传递数据方式

    Servlet传递数据方式 基本概述 Servlet传递数据的方式有很多,这里提供五种方式: 1.静态变量 2.HttpServletResponse的sendRedirect()方法 3.HttpS ...

  10. kvm初体验之二:安装

    Host: CentOS release 6.4 (Final) 1. 开启处理器的虚拟化功能 进入BIOS,使能虚拟化功能: 进入linux, grep -E "vmx|svm" ...