Description

 ``Accordian'' Patience 

You are to simulate the playing of games of ``Accordian'' patience, the rules for which are as follows:

Deal cards one by one in a row from left to right, not overlapping. Whenever the card matches its immediate neighbour on the left, or matches the third card to the left, it may be moved onto that card. Cards match if they are of the same suit or same rank. After making a move, look to see if it has made additional moves possible. Only the top card of each pile may be moved at any given time. Gaps between piles should be closed up as soon as they appear by moving all piles on the right of the gap one position to the left. Deal out the whole pack, combining cards towards the left whenever possible. The game is won if the pack is reduced to a single pile.

Situations can arise where more than one play is possible. Where two cards may be moved, you should adopt the strategy of always moving the leftmost card possible. Where a card may be moved either one position to the left or three positions to the left, move it three positions.

Input

Input data to the program specifies the order in which cards are dealt from the pack. The input contains pairs of lines, each line containing 26 cards separated by single space characters. The final line of the input file contains a # as its first character. Cards are represented as a two character code. The first character is the face-value (A=Ace, 2-9, T=10, J=Jack, Q=Queen, K=King) and the second character is the suit (C=Clubs, D=Diamonds, H=Hearts, S=Spades).

Output

One line of output must be produced for each pair of lines (that between them describe a pack of 52 cards) in the input. Each line of output shows the number of cards in each of the piles remaining after playing ``Accordian patience'' with the pack of cards as described by the corresponding pairs of input lines.

Sample Input

QD AD 8H 5S 3H 5H TC 4D JH KS 6H 8S JS AC AS 8D 2H QS TS 3S AH 4H TH TD 3C 6S
8C 7D 4C 4S 7S 9H 7C 5D 2S KD 2D QH JD 6D 9D JC 2C KH 3D QC 6C 9S KC 7H 9C 5C
AC 2C 3C 4C 5C 6C 7C 8C 9C TC JC QC KC AD 2D 3D 4D 5D 6D 7D 8D TD 9D JD QD KD
AH 2H 3H 4H 5H 6H 7H 8H 9H KH 6S QH TH AS 2S 3S 4S 5S JH 7S 8S 9S TS JS QS KS
#

Sample Output

6 piles remaining: 40 8 1 1 1 1
1 pile remaining: 52 根据题目意思,两种操作,固然可以看出每个牌堆需要靠栈来实现,故结构体来存放,内部有一个数组成员,可以开52。
然而,对于牌堆来说,似乎要支持访问后一个和前一个牌堆两种操作,故可以使用顺序表,然后访问时忽略0牌堆。
也可以使用双向链表。
下面贴两种方式的代码: 双向链表:
用时432MS:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define eps 1e-10 using namespace std; struct node
{
char Stack[52][2];
int top;
node *pre;
node *next;
}; node *head;
int num; void Del(node *p)
{
node *t;
t = p->pre;
t->next = p->next;
if (p->next != NULL)
p->next->pre = t;
free(p);
} bool Input()
{
num = 0;
head = (node *)malloc(sizeof(node));
node *p = head, *t;
char ch;
ch = getchar();
if (ch == '#')
return 0;
p->Stack[0][0] = ch;
ch = getchar();
p->Stack[0][1] = ch;
p->top = 1;
p->pre = NULL;
p->next = NULL;
num++;
getchar();
for (int i = 0; i < 51; ++i)
{
p->next = (node *)malloc(sizeof(node));
t = p;
p = p->next;
ch = getchar();
p->Stack[0][0] = ch;
ch = getchar();
p->Stack[0][1] = ch;
p->top = 1;
p->next = NULL;
p->pre = t;
num++;
getchar();
}
return 1;
} void Output()
{
if (num == 1)
{
printf("1 pile remaining: %d\n", head->top);
return;
}
printf("%d piles remaining:", num);
node *p = head;
for (;;)
{
printf(" %d", p->top);
if (p->next == NULL)
break;
p = p->next;
}
printf("\n");
} bool Do()
{
node *p, *t;
p = head;
for (;;)
{
t = p;
for (int i = 0; t != NULL && i < 3; ++i)
t = t->pre;
if (t != NULL &&
(t->Stack[t->top-1][0] == p->Stack[p->top-1][0] ||
t->Stack[t->top-1][1] == p->Stack[p->top-1][1]))
{
t->Stack[t->top][0] = p->Stack[p->top-1][0];
t->Stack[t->top][1] = p->Stack[p->top-1][1];
t->top++;
p->top--;
if (p->top == 0)
{
Del(p);
num--;
}
return 1;
}
t = p->pre;
if (t != NULL &&
(t->Stack[t->top-1][0] == p->Stack[p->top-1][0] ||
t->Stack[t->top-1][1] == p->Stack[p->top-1][1]))
{
t->Stack[t->top][0] = p->Stack[p->top-1][0];
t->Stack[t->top][1] = p->Stack[p->top-1][1];
t->top++;
p->top--;
if (p->top == 0)
{
Del(p);
num--;
}
return 1;
}
if (p->next == NULL)
break;
p = p->next;
}
return 0;
} int main()
{
//freopen("test.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
while (Input())
{
while (Do());
Output();
}
return 0;
}

顺序表:

用时:879MS

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define inf 0x3fffffff
#define esp 1e-10
#define N 100005 using namespace std; struct node
{
int top;
char card[53][3];
}s[52]; bool Input()
{
scanf ("%s", s[0].card[0]);
if (s[0].card[0][0] == '#')
return 0;
s[0].top = 1;
for (int i = 1; i < 52; ++i)
{
s[i].top = 1;
scanf ("%s", s[i].card[0]);
}
return 1;
} void Output()
{
queue <int> q;
for (int i = 0; i < 52; ++i)
if (s[i].top != 0)
q.push(i);
int sum = q.size();
if (sum == 1)
printf ("1 pile remaining: %d\n", s[q.front()].top);
else
{
printf ("%d piles remaining:", sum);
int k;
while (!q.empty())
{
k = q.front();
q.pop();
printf (" %d", s[k].top);
}
printf ("\n");
}
} void qt()
{
int p = 0;
for (;;)
{
if (p == 52)
break;
if (s[p].top != 0)
{
int one = -1, two = -1;
int flag = 0, j = p-1;
for (;;)
{
if (j < 0)
break;
if (s[j].top != 0)
{
flag++;
if (flag == 3)
{
one = j;
break;
}
if (flag == 1)
two = j;
}
j--;
}
if (one != -1)
{
if (s[p].card[s[p].top-1][0] == s[one].card[s[one].top-1][0] ||
s[p].card[s[p].top-1][1] == s[one].card[s[one].top-1][1])
{
strcpy (s[one].card[s[one].top], s[p].card[s[p].top-1]);
s[p].top--;
s[one].top++;
p = 0;
continue;
}
}
if (two != -1)
{
if (s[p].card[s[p].top-1][0] == s[two].card[s[two].top-1][0] ||
s[p].card[s[p].top-1][1] == s[two].card[s[two].top-1][1])
{
strcpy (s[two].card[s[two].top], s[p].card[s[p].top-1]);
s[p].top--;
s[two].top++;
p = 0;
continue;
}
}
}
++p;
}
} int main()
{
//freopen ("test.txt", "r", stdin);
while (Input())
{
qt();
Output();
}
return 0;
}
												

ACM学习历程——UVA127 "Accordian" Patience(栈, 链表)的更多相关文章

  1. ACM学习历程——UVA11234 Expressions(栈,队列,树的遍历,后序遍历,bfs)

    Description   Problem E: Expressions2007/2008 ACM International Collegiate Programming Contest Unive ...

  2. [刷题]算法竞赛入门经典(第2版) 6-9/UVa127 - "Accordian" Patience

    题意:52张牌排一行,一旦出现任何一张牌与它左边的第一张或第三张"匹配",即花色或点数相同,则须立即将其移动到那张牌上面,将其覆盖.能执行以上移动的只有压在最上面的牌.直到最后没有 ...

  3. ACM学习历程——UVA 127 "Accordian" Patience(栈;模拟)

    Description  ``Accordian'' Patience  You are to simulate the playing of games of ``Accordian'' patie ...

  4. ACM学习历程——UVA11111 Generalized Matrioshkas(栈)

    Description   Problem B - Generalized Matrioshkas   Problem B - Generalized Matrioshkas  Vladimir wo ...

  5. ACM学习历程——UVA442 Matrix Chain Multiplication(栈)

    Description   Matrix Chain Multiplication  Matrix Chain Multiplication  Suppose you have to evaluate ...

  6. ACM学习历程——ZOJ 3829 Known Notation (2014牡丹江区域赛K题)(策略,栈)

    Description Do you know reverse Polish notation (RPN)? It is a known notation in the area of mathema ...

  7. 完成了C++作业,本博客现在开始全面记录acm学习历程,真正的acm之路,现在开始

    以下以目前遇到题目开始记录,按发布时间排序 ACM之递推递归 ACM之数学题 拓扑排序 ACM之最短路径做题笔记与记录 STL学习笔记不(定期更新) 八皇后问题解题报告

  8. ACM学习历程—HDU 5512 Pagodas(数学)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5512 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是给了初始的集合{a, b},然后取集合里 ...

  9. ACM学习历程—HDU5521 Meeting(图论)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5521 学习菊苣的博客,只粘链接,不粘题目描述了. 题目大意就是一个人从1开始走,一个人从n开始走.让最 ...

随机推荐

  1. CSS - 修改input - placeholder 和 readonly 的样式

    placeholder ::-webkit-input-placeholder { /* WebKit browsers */ color: #999999; } :-moz-placeholder ...

  2. DataTable去除空行

    protected void removeEmpty(DataTable dt) { List<DataRow> removelist = new List<DataRow>( ...

  3. 01 http协议概念及工作流程

    一:HTTP协议 重要性: 无论是以后用webserverice ,还是用rest做大型架构,都离不开对HTTP协议的认识. 甚至可以简化的说: webservice = http协议+XML Res ...

  4. Android使用ViewPager实现无限循环滑动及轮播(附源代码)

    MainActivity例如以下: package cc.ww; import java.util.ArrayList; import android.app.Activity; import and ...

  5. python 基础 9.2 mysql 事务

    一. mysql 事务    MySQL 事务主要用于处理操作量大,复杂度高的数据.比如,你操作一个数据库,公司的一个员工离职了,你要在数据库中删除它的资料,也要删除该人员相关的,比如邮箱,个人资产等 ...

  6. 宇视摄像机RTSP地址格式规则

    rtsp://{用户名}:{密码}@{ip}:{port}/video1/2/3,分别对应主/辅/三码流: 比如: rtsp://admin:admin@192.168.8.8:554/video1, ...

  7. 九度OJ 1010:A + B (字符串处理)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:7166 解决:3646 题目描述: 读入两个小于100的正整数A和B,计算A+B. 需要注意的是:A和B的每一位数字由对应的英文单词给出. ...

  8. git查看某一次commit里面的内容,即本次commit相对于原来的版本进行了哪些修改

    1 知道commit id的话 git show commit-id 2 想要查看某次commit的某个文件进行了哪些修改 git show commit-id filename

  9. 20179209课后作业之od命令重写

    一.问题描述: 1 复习c文件处理内容 2 编写myod.c 用myod XXX实现Linux下od -tx -tc XXX的功能 3. main与其他分开,制作静态库和动态库 4. 编写Makefi ...

  10. 破解powerdesigner教程

    点Tool