For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1.

Now given a string representing n, you should return the smallest good base of n in string format.

Example 1:

Input: "13"
Output: "3"
Explanation: 13 base 3 is 111.

Example 2:

Input: "4681"
Output: "8"
Explanation: 4681 base 8 is 11111.

Example 3:

Input: "1000000000000000000"
Output: "999999999999999999"
Explanation: 1000000000000000000 base 999999999999999999 is 11.

Note:

  1. The range of n is [3, 10^18].
  2. The string representing n is always valid and will not have leading zeros.
 
Approach #1:
class Solution {
public:
string smallestGoodBase(string n) {
unsigned long long tn = (unsigned long long)stoll(n);
unsigned long long x = 1;
for (int i = 62; i >= 1; --i) {
if ((x<<i) < tn) {
unsigned long long temp = solve(tn, i);
if (temp != 0) return to_string(temp);
}
}
return to_string(tn-1);
}
private:
unsigned long long solve(unsigned long long num, int d) {
double tn = (double) num;
unsigned long long r = (unsigned long long)(pow(tn, 1.0/d)+1);
unsigned long long l = 1;
while (l <= r) {
unsigned long long sum = 1;
unsigned long long cur = 1;
unsigned long long m = l + (r - l) / 2;
for (int i = 1; i <= d; ++i) {
cur *= m;
sum += cur;
}
if (sum == num) return m;
if (sum < num) l = m + 1;
else r = m - 1;
}
return 0;
}
};
Runtime: 4 ms, faster than 49.59% of C++ online submissions for Smallest Good Base.

 Analysis:

The input can be stored in a long long int, here I use unsigned long long int for a larger range. We need to find k, for 1+k^1+k^2+k^3+...+k^d=n. The smallest possible base is k=2, with has the longest possible representation, i.e., largest d. So, to find the smallest base means to find the longest possible representation "11111....1" based on k. As n<=10^18, so n<(1<<62). We iterate the length of the representation from 62 to 2 (2 can always be valid, with base=n-1), and check whether a given length can be valid.

For a given length d, we use binary search to check whether there is a base k which satisfies 1+k^1+k^2+...k^d=n. The left limit is 1, and the right limit is pow(n,1/d)+1, i.e., the d th square root of n. The code is shown below.

come from: https://leetcode.com/problems/smallest-good-base/discuss/96590/3ms-AC-C%2B%2B-long-long-int-%2B-binary-search

483. Smallest Good Base的更多相关文章

  1. [LeetCode] 483. Smallest Good Base 最小的好基数

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  2. Leetcode 483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  3. [LeetCode] Smallest Good Base 最小的好基数

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  4. [Swift]LeetCode483. 最小好进制 | Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  5. Binary Search-483. Smallest Good Base

    For an integer n, we call k>=2 a good base of n, if all digits of n base k are 1. Now given a str ...

  6. LeetCode All in One题解汇总(持续更新中...)

    突然很想刷刷题,LeetCode是一个不错的选择,忽略了输入输出,更好的突出了算法,省去了不少时间. dalao们发现了任何错误,或是代码无法通过,或是有更好的解法,或是有任何疑问和建议的话,可以在对 ...

  7. leetcode 几道题目

    是周六晚上的几道题,晚上11点半,睡的早,起不来! 494. Target Sum 分析:看完这题,看到数据范围,长度20,枚举就是1<<20 = 1e6, 然后单次20,总共就是2e8, ...

  8. All LeetCode Questions List 题目汇总

    All LeetCode Questions List(Part of Answers, still updating) 题目汇总及部分答案(持续更新中) Leetcode problems clas ...

  9. Leetcode problems classified by company 题目按公司分类(Last updated: October 2, 2017)

    All LeetCode Questions List 题目汇总 Sorted by frequency of problems that appear in real interviews. Las ...

随机推荐

  1. php 获取当前页面url路径

    #测试网址: http://localhost/blog/testurl.php?id=5 //获取域名或主机地址 echo $_SERVER['HTTP_HOST'].""; # ...

  2. Redis 过期键的设置、获取和删除过期时间

    Redis 过期键的设置.获取和删除过期时间 转自http://blog.51cto.com/littledevil/1813956 设置过期 默认情况下键是没有生存时间的,也就是永不过期,除非清空内 ...

  3. Linux 中权限的再讨论( 上 )

    前言 在Linux系统中,用户分为三个部分( 所有者 同组人 其他 ).每个部分的权限又可以赋予读/写/执行权限.这样,文件的权限标记一共包含 9 个权限位.好了,很多朋友对于Linux权限的了解就仅 ...

  4. git 安装及命令

    一.window下的git安装 1.安装教程 网上教程一堆.我參考的是这个:Git_Windows 系统下Git安装图解 还有这个也不错 2.环境搭建: 在配置完毕后,自己主动载入到系统环境变量中.如 ...

  5. android检测当前网络是否可用

    在android程序中运行第一步就是检测当前有无可用网络  如果没有网络可用就退出程序  if (isConnect(this)==false)           {                ...

  6. EasyIPCamera实现的桌面采集直播用于课堂、会议、展销同屏等应用

    本文转自博客:http://blog.csdn.net/jinlong0603/article/details/56664233 Android同屏直播 在Android上除了获取摄像头数据为Easy ...

  7. EasyHLS直播在Linux非root用户运行时出现无法写文件的问题解决mkdir 0777

    今天在Github上收到一个用户反馈的EasyHLS在linux上非root用户调用时,无法写目录的问题:https://github.com/EasyDarwin/EasyHLS/issues/3, ...

  8. Fully qualified domain name for gitlab

    nginx - Fully qualified domain name for gitlab - Stack Overflow https://stackoverflow.com/questions/ ...

  9. zoom:1

    zoom这个特性是IE特有的属性.   zoom:1;一般是拿来解决IE6的子元素浮动时候父元素不随着自动扩大的问题,功能相当于overflow:auto,同样也可以用height:1%来代替zoom ...

  10. JS获取当前页面的URL

    如果获取“当前”域名 host = window.location.host; url=document.domain; url = window.location.href; 取得完整url路径: ...