题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095

题意:

给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定前m个数中的k个数的位置,问你有多少中排列方案。(比如5 3 2有1 4 3 2 5这种方案,1和3固定了)

思路:

前m个取k个就是C(m, k)个方案。然后就是类似错排的思想,设dp[i]为i个数在初始位置各不相同。其中的组合数用逆元算出。

ans = dp[m - k] * C(n - m, 0) + dp[m - k + 1] * C(n - m, 1) .. dp[n - k] * C(n - m, n - m),这个式子表示取后面n-m个数的某些数 与 前面的m - k个数形成错排,剩下的数位置不变。

最后就是ans * C(m, k)

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
LL mod = 1e9 + , dp[];
LL f[];
LL fpow(LL a, LL n) {
LL ans = ;
while(n) {
if(n & )
ans = ans * a % mod;
a = a * a % mod;
n >>= ;
}
return ans;
}
int main()
{
dp[] = ;
dp[] = , dp[] = ;
f[] = f[] = , f[] = ;
for(LL i = ; i <= ; ++i) {
dp[i] = (dp[i - ] + dp[i - ]) % mod * (LL)(i - ) % mod;
f[i] = f[i - ] * (LL)i % mod;
}
int n, m, k, t;
scanf("%d", &t);
for(int ca = ; ca <= t; ++ca) {
scanf("%d %d %d", &n, &m, &k);
if(n == m && m - k == ) {
printf("Case %d: 0\n", ca);
continue;
}
LL ans = f[m] * fpow(f[k]*f[m - k]%mod, mod - ) % mod;
int temp = m - k, temp2 = n - m;
LL res = ;
for(int i = temp; i <= temp2 + temp; ++i) {
res = (res + dp[i] * f[temp2] % mod * fpow(f[i - temp]*f[temp2 - i + temp] % mod, mod - ) % mod) % mod;
}
printf("Case %d: %lld\n", ca, ans * res % mod);
}
return ;
}

Light oj 1095 - Arrange the Numbers (组合数学+递推)的更多相关文章

  1. light oj 1095 - Arrange the Numbers排列组合(错排列)

    1095 - Arrange the Numbers Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N ...

  2. Light OJ 1095 Arrange the Numbers(容斥)

    给定n,m,k,要求在n的全排列中,前m个数字中恰好有k个位置不变,有几种方案?首先,前m个中k个不变,那就是C(m,k),然后利用容斥原理可得 ans=ΣC(m,k)*(-1)^i*C(m-k,i) ...

  3. LightOJ - 1095 - Arrange the Numbers(错排)

    链接: https://vjudge.net/problem/LightOJ-1095 题意: Consider this sequence {1, 2, 3 ... N}, as an initia ...

  4. UVA 11481 Arrange the Numbers(组合数学 错位排序)

    题意:长度为n的序列,前m位恰好k位正确排序,求方法数 前m位选k个数正确排,为cm[m][k],剩余m - k个空位,要错排,这m - k个数可能是前m个数中剩下的,也可能来自后面的n - m个数 ...

  5. 【NOIP2016】组合数问题 题解(组合数学+递推)

    题目链接 题目大意:给定$n,m,k$,求满足$k|C_i^j$的$C_i^j$的个数.$(0\leq i\leq n,1\leq j\leq \min(i,m))$. --------------- ...

  6. light oj 1095 组合数学

    #include <stdio.h> #include <string.h> #include <stdlib.h> #include <math.h> ...

  7. lightoj 1095 - Arrange the Numbers(dp+组合数)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题解:其实是一道简单的组合数只要推导一下错排就行了.在这里就推导一下错排 ...

  8. Light OJ 1095

    题意: 给你 N 个数, 总共有 N! 种排列, 现在 要你统计前 M 个数 刚好 有K 个数 在原来的位置上 的排列个数 思路: 首先 M 中选 K C(m,k): 则 共 剩下 n - k 个数, ...

  9. UVa 11481 Arrange the Numbers (组合数学)

    题意:给定 n,m,k,问你在 1 ~ n 的排列中,前 m 个恰好有 k 个不在自己位置的排列有多少个. 析:枚举 m+1 ~ n 中有多少个恰好在自己位置,这个是C(n-m, i),然后前面选出 ...

随机推荐

  1. MapReduce进行数据查询和实现推简单荐系统

    1  运行环境说明 1.1 硬软件环境 1.2 机器网络环境 2  书面作业1:计算员工相关 2.1 书面作业1内容 2.2  实现过程 2.2.1   准备测试数据 2.2.2   问题1:求各个部 ...

  2. Analyze Program Runtime Stack

    Introduce: Process Explorer is an advanced process management utility that picks up where Task Manag ...

  3. SSH进阶之路

    [SSH进阶之路]Hibernate基本原理(一)       在开始学Hibernate之前,一直就有人说:Hibernate并不难,无非是对JDBC进一步封装.一句不难,难道是真的不难还是眼高手低 ...

  4. IOS开发---菜鸟学习之路--(十四)-将BASE64图片转换成Image

    本文基本全部都是代码 首先是.H文件 #import <Foundation/Foundation.h> @interface Base64AndImageHelp : NSObject ...

  5. 56、使用android studio(v1.3.*)修改包名 (rename package name)

    一.修改包名 ①选中目录,开始构造 在弹窗中选中Rename directory 在弹窗中选中Rename package 填写新的包名,点击Refactor 如果有警告,不用管它,直接点击Do Re ...

  6. C++ STL map容器的说明测试1

    // maptest.cpp : 定义控制台应用程序的入口点.// #include "stdafx.h" /*********************************** ...

  7. vim中插入递增数

    假设生成0-9的递增数 1.插入数字1,yy复制,9p 2.输入命令 let i= | g//s//\=i/ | let i=i+1 3.结果:

  8. RESTful-rest_framework应用第一篇

    一:了解RESTful 主要是做前后端分离用的,RESTful只做后台数据和接口,供外面去调用. REST是Representational State Transfer的简称,中文翻译为“表征状态转 ...

  9. 做一个APP

    前言 有点零乱,但是我想写下来慢慢整理,搭建一个好点的工程-模式MVC, 会包括一些第三方库,动画库,第三方库管理关联,自定义常用控件的管理和关联 1.预编译文件的创建 在build setting ...

  10. mysql错误之2014

    error:2014 Commands out of sync; you can't run this command now 这个错误号我也真是醉了. 一直纠结于为什么存储过程执行完,commit操 ...