fzu1759 Super A^B mod C 扩展欧拉定理降幂
扩展欧拉定理:
\]
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
ll aa, cc;
char bb[1000005];
ll getPhi(ll x){
ll ans=x;
for(ll i=2; i*i<=x; i++)
if(x%i==0){
ans -= ans / i;
while(x%i==0) x /= i;
}
if(x>1) ans -= ans / x;
return ans;
}
ll ksm(ll a, ll b, ll c){
ll re=1;
while(b){
if(b&1) re = (re * a) % c;
a = (a * a) % c;
b >>= 1;
}
return re;
}
int main(){
while(scanf("%lld %s %lld", &aa, bb, &cc)!=EOF){
ll phi=getPhi(cc);
int len=strlen(bb);
ll tmp=0;
for(int i=0; i<len; i++){
tmp = tmp * 10 + bb[i] - '0';
if(tmp>=phi) break;
}
if(tmp>=phi){
tmp = 0;
for(int i=0; i<len; i++)
tmp = (tmp * 10 + bb[i] - '0') % phi;
printf("%lld\n", ksm(aa, tmp+phi, cc));
}
else printf("%lld\n", ksm(aa, tmp, cc));
}
return 0;
}
fzu1759 Super A^B mod C 扩展欧拉定理降幂的更多相关文章
- 牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)
链接:E.简单数据结构1 题意: 给一个长为n的序列,m次操作,每次操作: 1.区间加 2.对于区间,查询 ,一直到- 请注意每次的模数不同. 题解:扩展欧拉定理降幂 对一个数p取log(p)次的 ...
- FZU-1759 Super A^B mod C---欧拉降幂&指数循环节
题目链接: https://cn.vjudge.net/problem/FZU-1759 题目大意: 求A^B%C 解题思路: 注意,这里long long需要用%I64读入,不能用%lld #inc ...
- BZOJ3884题解上帝与集合的正确用法--扩展欧拉定理
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{ ...
- FZU Super A^B mod C(欧拉函数降幂)
Problem 1759 Super A^B mod C Accept: 878 Submit: 2870 Time Limit: 1000 mSec Memory Limit : 327 ...
- [luogu4139]上帝与集合的正确用法【欧拉定理+扩展欧拉定理】
题目大意 让你求\(2^{2^{2^{\cdots}}}(mod)P\)的值. 前置知识 知识1:无限次幂怎么解决 让我们先来看一道全国数学竞赛的一道水题: 让你求解:\(x^{x^{x^{\cdot ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- SHOI 2017 相逢是问候(扩展欧拉定理+线段树)
题意 https://loj.ac/problem/2142 思路 一个数如果要作为指数,那么它不能直接对模数取模,这是常识: 诸如 \(c^{c^{c^{c..}}}\) 的函数递增飞快,不是高精度 ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- 2018牛客网暑期ACM多校训练营(第四场) A - Ternary String - [欧拉降幂公式][扩展欧拉定理]
题目链接:https://www.nowcoder.com/acm/contest/142/A 题目描述 A ternary string is a sequence of digits, where ...
随机推荐
- 死磕 java并发包之LongAdder源码分析
问题 (1)java8中为什么要新增LongAdder? (2)LongAdder的实现方式? (3)LongAdder与AtomicLong的对比? 简介 LongAdder是java8中新增的原子 ...
- Spring事务的5种隔离级别
概述:isolation设定事务的隔离级别,事务管理器根据它来控制另外一个事务可以看到本事务内的哪些数据. 定义的5个不同的事务隔离级别: DEFAULT:默认的隔离级别,使用数据库默认的事务隔离级别 ...
- Dubbo封装rest服务返回结果
由于Dubbo服务考虑到一个是给其他系统通过RPC调用,另外一个是提供HTTP协议本身系统的后台管理页面,因此Dubbo返回参数在rest返回的时候配置拦截器进行处理. 在拦截器中,对返回参数封装成如 ...
- 1043 方格取数 2000年NOIP全国联赛提高组
1043 方格取数 2000年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 设有N* ...
- IDEA Spring Boot 项目创建
1.创建新项目 2.选择 Spring Initializr 3.选择默认项或者修改其名称也可,直接下一步 4.选择 web选项以及spring boot版本(我用的是2.0.2) 5.为项目创建名称 ...
- Nmap安全扫描程序
Nmap安全扫描程序 下载地址:https://nmap.org/download.html#windows 参考手册:https://nmap.org/man/zh/index.html#man-d ...
- 关于如何将html中的表格下载成csv格式的方法
今天在网上看了很多方法,自己还是慢慢探索写出了最终效果 简单代码如下: <!DOCTYPE html> <html> <head> <meta content ...
- 带你零基础入门redis【一】
本篇文章介绍在CentOS7系统安装redis,以及redis的简单操作 我们把redis安装在/usr/local目录下.分别执行以下命令 [root@VM_6_102_centos ~]# c ...
- 小白学phoneGap《构建跨平台APP:phoneGap移动应用实战》连载五(使用PhoneGap获取设备信息)
除了能够将HTML页面打包成可以直接安装运行的APP外,PhoneGap的一个最大优势在于可以通过JavaScript调用设备来访问设备上的硬件信息,从而实现一些原本只有依靠原生SDK才能够达到的目的 ...
- uva10129 PlayOnWords(并查集,欧拉回路)
判断无向图是否存在欧拉回路,就是看度数为奇数的点有多少个,如果有两个,那么以那分别两个点为起点和终点,可以构造出一条欧拉回路,如果没有,就任意来,否则,欧拉回路不存在. 首先用并查集判断连通,然后统计 ...