SPOJ QTREE6 Query on a tree VI 树链剖分
题意:
给出一棵含有\(n(1 \leq n \leq 10^5)\)个节点的树,每个顶点只有两种颜色:黑色和白色。
一开始所有的点都是黑色,下面有两种共\(m(1 \leq n \leq 10^5)\)次操作:
- \(0 \, u\)表示查询\(u\)所在的连通块的大小,相邻两个点颜色相同则属于一个连通块。
- \(0 \, u\)表示翻转\(u\)的颜色,即黑点变白点,白点变黑点。
分析:
首先将这棵树剖分成轻重链。
然后我们维护两个值:\(White(u)\)和\(Black(u)\)。
\(White(u)\)表示当\(u\)是白点时(这里我们不关心\(u\)真正的颜色),以\(u\)为根的子树中,\(u\)所在的连通块的大小。
同理,\(Black(u)\)表示\(u\)是黑点时(这里我们不关心\(u\)真正的颜色),以\(u\)为根的子树中,\(u\)所在的连通块的大小。
对于查询操作\(0 \, \, u\):
从\(u\)往上走,走到深度最小的与\(u\)同色的节点\(v\),那么答案就是\(White(v)\)或\(Black(v)\)。对于修改操作\(1, \, \, u\):
由于对称性,不妨假设\(u\)从白点变为黑点。
从\(u\)的父节点往上走,走到第一个黑点\(v_1\),设路径\(path_1\)为\(fa(u) \to v\),然后将\(path_1\)上所有点的\(White\)值减去\(White(u)\)。
同样地,从\(u\)的父节点往上走,走到第一个白点\(v_2\),设路径\(path_2\)为\(fa(u) \to v_2\),然后将\(path_2\)上所有点的\(Black\)值加上\(Black(u)\)。
这里修改操作是成段更新的,所以要用线段树维护一下。
接下来还要解决一个问题:如何快速找到上面说的深度最浅的同色点和遇到的第一个黑/白点
继续用线段树维护一个\(fir0\)和\(fir1\),表示该区间从右往左遇到的第一个白点和黑点,对应到树上的链就是从下往上。
这样就解决了第二个问题,其实第一个问题的答案也可以间接得到。
要找深度最前的同色点,就是第一个异色点的那个子节点。
父节点只有一个,但子节点又如何确定呢?
注意到,我们查询时是在剖出来的链上一条一条往上“跳”的,所以在同一条链上一个点的子节点就在线段树中它位置的右边相邻的那个点。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn = 100000 + 10;
const int maxnode = maxn * 4;
struct Edge
{
int v, nxt;
Edge() {}
Edge(int v, int nxt): v(v), nxt(nxt) {}
};
int ecnt, head[maxn];
Edge edges[maxn * 2];
void AddEdge(int u, int v) {
edges[ecnt] = Edge(v, head[u]);
head[u] = ecnt++;
}
int n;
int fa[maxn], sz[maxn], son[maxn], dep[maxn];
void dfs(int u) {
sz[u] = 1; son[u] = 0;
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u]) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs(v);
sz[u] += sz[v];
if(sz[v] > sz[son[u]]) son[u] = v;
}
}
int tot, top[maxn], id[maxn], pos[maxn];
void dfs2(int u, int tp) {
top[u] = tp;
id[u] = ++tot;
pos[tot] = u;
if(!son[u]) return;
dfs2(son[u], tp);
for(int i = head[u]; ~i; i = edges[i].nxt) {
int v = edges[i].v;
if(v == fa[u] || v == son[u]) continue;
dfs2(v, v);
}
}
int color[maxn], addv[2][maxnode];
int fir[2][maxnode];
void build(int o, int L, int R) {
if(L == R) {
fir[0][o] = 0; fir[1][o] = L;
addv[0][o] = 1; addv[1][o] = sz[pos[L]];
return;
}
int M = (L + R) / 2;
build(o<<1, L, M);
build(o<<1|1, M+1, R);
fir[0][o] = 0;
fir[1][o] = R;
}
void pushdown(int o) {
for(int i = 0; i < 2; i++) {
int& t = addv[i][o];
if(!t) continue;
addv[i][o<<1] += t;
addv[i][o<<1|1] += t;
t = 0;
}
}
void update(int o, int L, int R, int qL, int qR, int col, int v) {
if(qL <= L && R <= qR) {
addv[col][o] += v;
return;
}
pushdown(o);
int M = (L + R) / 2;
if(qL <= M) update(o<<1, L, M, qL, qR, col, v);
if(qR > M) update(o<<1|1, M+1, R, qL, qR, col, v);
}
void UPDATE(int u, int v, int col, int val) {
while(top[u] != top[v]) {
update(1, 1, n, id[top[u]], id[u], col, val);
u = fa[top[u]];
}
update(1, 1, n, id[v], id[u], col, val);
}
int querysize(int o, int L, int R, int p, int col) {
if(L == R) return addv[col][o];
pushdown(o);
int M = (L + R) / 2;
if(p <= M) return querysize(o<<1, L, M, p, col);
else return querysize(o<<1|1, M+1, R, p, col);
}
int queryfir(int o, int L, int R, int qL, int qR, int col) {
if(qL <= L && R <= qR) return fir[col][o];
int ans = 0;
int M = (L + R) / 2;
if(qR > M) ans = queryfir(o<<1|1, M+1, R, qL, qR, col);
if(ans) return ans;
if(qL <= M) ans = queryfir(o<<1, L, M, qL, qR, col);
return ans;
}
int QueryFir(int u, int col) {
int ans = 0;
int t = top[u];
while(t != 1) {
ans = queryfir(1, 1, n, id[t], id[u], col);
if(ans) return ans;
u = fa[t]; t = top[u];
}
return queryfir(1, 1, n, 1, id[u], col);
}
int QuerySuf(int u, int col) {
int ans = id[u];
while(top[u] != 1) {
int t = queryfir(1, 1, n, id[top[u]], id[u], col ^ 1);
if(t) return t == id[u] ? ans : t + 1;
ans = id[top[u]];
u = fa[top[u]];
}
int t = queryfir(1, 1, n, 1, id[u], col ^ 1);
if(!t) return 1;
return t == id[u] ? ans : t + 1;
}
void change(int o, int L, int R, int p) {
if(L == R) {
int u = pos[L];
int& c = color[u];
c ^= 1;
fir[c][o] = L;
fir[c ^ 1][o] = 0;
return;
}
int M = (L + R) / 2, lenr = R - M;
if(p <= M) change(o<<1, L, M, p);
else change(o<<1|1, M+1, R, p);
fir[0][o] = fir[0][o<<1|1] ? fir[0][o<<1|1] : fir[0][o<<1];
fir[1][o] = fir[1][o<<1|1] ? fir[1][o<<1|1] : fir[1][o<<1];
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i++) color[i] = 1;
ecnt = 0;
memset(head, -1, sizeof(head));
for(int i = 1; i < n; i++) {
int u, v; scanf("%d%d", &u, &v);
AddEdge(u, v);
AddEdge(v, u);
}
dfs(1);
tot = 0;
dfs2(1, 1);
build(1, 1, n);
int _; scanf("%d", &_);
while(_--) {
int op, u; scanf("%d%d", &op, &u);
if(op == 0) {
int v = pos[QuerySuf(u, color[u])];
int ans = querysize(1, 1, n, id[v], color[v]);
printf("%d\n", ans);
} else {
if(u != 1) {
int v = pos[QueryFir(fa[u], color[u] ^ 1)];
if(!v) v = 1;
int sub = querysize(1, 1, n, id[u], color[u]);
UPDATE(fa[u], v, color[u], -sub);
v = pos[QueryFir(fa[u], color[u])];
if(!v) v = 1;
int add = querysize(1, 1, n, id[u], color[u] ^ 1);
UPDATE(fa[u], v, color[u] ^ 1, add);
}
change(1, 1, n, id[u]);
}
}
return 0;
}
SPOJ QTREE6 Query on a tree VI 树链剖分的更多相关文章
- bzoj 3637: Query on a tree VI 树链剖分 && AC600
3637: Query on a tree VI Time Limit: 8 Sec Memory Limit: 1024 MBSubmit: 206 Solved: 38[Submit][Sta ...
- QTREE3 spoj 2798. Query on a tree again! 树链剖分+线段树
Query on a tree again! 给出一棵树,树节点的颜色初始时为白色,有两种操作: 0.把节点x的颜色置反(黑变白,白变黑). 1.询问节点1到节点x的路径上第一个黑色节点的编号. 分析 ...
- spoj 375 Query on a tree(树链剖分,线段树)
Query on a tree Time Limit: 851MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Sub ...
- SPOJ 375 Query on a tree(树链剖分)(QTREE)
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, ...
- SPOJ QTREE - Query on a tree 【树链剖分模板】
题目链接 引用到的大佬博客 代码来自:http://blog.csdn.net/jinglinxiao/article/details/72940746 具体算法讲解来自:http://blog.si ...
- SPOJ 375 Query on a tree(树链剖分)
https://vjudge.net/problem/SPOJ-QTREE 题意: 给出一棵树,树上的每一条边都有权值,现在有查询和更改操作,如果是查询,则要输出u和v之间的最大权值. 思路: 树链剖 ...
- SPOJ QTREE Query on a Tree【树链剖分模板题】
树链剖分,线段树维护~ #include <cstdio> #include <cstring> #include <iostream> #include < ...
- SPOJ 375. Query on a tree (树链剖分)
Query on a tree Time Limit: 5000ms Memory Limit: 262144KB This problem will be judged on SPOJ. Ori ...
- SPOJ 375 Query on a tree【树链剖分】
题目大意:给你一棵树,有两个操作1.修改一条边的值,2.询问从x到y路径上边的最大值 思路:如果树退化成一条链的话线段树就很明显了,然后这题就是套了个树连剖分,调了很久终于调出来第一个模板了 #inc ...
随机推荐
- spring之控制反转
IOC (Inversion of Control) 控制反转 我的理解:将创建对象的控制权从代码本身转交给了外部容器(spring容器). 1.将组件对象(业务对象)的控制权从代码本身转移到外部容器 ...
- paas相关,添加ing
1. docker 构建镜像,docker build -t image_name:version dockerfilePath.使用镜像启动一个docker容器,docker run --name ...
- 一个好用的压力测试工具tsung
一个好用的压力测试工具tsung 前段时间一直在忙各种事情,快三周没弄过引擎了,今天有点时间,正好之前写的服务器引擎也到了收尾测试的阶段,于是就研究了下怎么测试服务器压力. ...
- BZOJ3004: 吊灯(结论 毒瘤)
题意 $n$个节点的树,判断能否划分成$\frac{n}{k}$个大小为$k$的联通块 Sol 首先$k$必须是$n$的倍数. 然后刚开始我就非常傻的以为输出所有约数就行了.. 但是图是这样,$k = ...
- js push(),pop(),shift(),unshift()
以前没有太在意这些,这几天看<Javascript 设计模式与开发实践>(不得不说这是一本好书) 发现总是会用到这几个函数,可是有什么区别呢?? 简单来说是两套东西(数据结构时老师详细的讲 ...
- Arduino ESP8266编程深入要点
Arduino for ESP8266的话,如果不修改代码,默认没有办法进入轻睡眠的省电模式,只能进入Modem Sleep,也就是说Wifi可以暂时睡眠但是CPU没法睡,Modem Sleep最低功 ...
- /usr/local/sbin/fping -s www.baidu.com www.google.com
/usr/local/sbin/fping -s www.baidu.com www.google.com
- easyui常用控件及参数说明
CSS类定义: div easyui-window window窗口样式 属性如下: 1) modal:是否生成模态窗口.tru ...
- POJ Charlie's Change 查理之转换(多重背包,变形)
题意: 给定身上的4种硬币,分别是1 ,5 ,10, 25面额各有多张,要求组成面额p的硬币尽可能多.输出组成p的4种硬币各自的数量. 思路: 多重背包,300+ms.用01背包+二进制的方法.记录下 ...
- python基础教程总结1——列表和元组
1.序列 python含有6种内建序列——列表,元组,字符串,Unicode字符串,buffer对象,xrange对象 2.通用序列操作 2.1 索引 注: input()根据用户输入变换相应的类 ...