Problem Description
 
Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.
There are m chain on the tree, Each chain has a certain weight. Coco would like to pick out some chains any two of which do not share common vertices.
Find out the maximum sum of the weight Coco can pick
 
  挺不错的一道题目,15年多校的第一场的题目,不过我太弱,比赛的时候没能想出来,赛后想了一天才把他过掉。
  刚开始的时候想法是dfs序,然后dp就好,但是好像有点问题,然后就GG了。。。
  然后想到了树形DP,想了很久才会。
  首先对于每个链,找到他两个端点的LCA,然后把这个链加到他们的LCA那里去。
  dp[i][0]表示对于i这个点,不选LCA为i的链则这颗以i为根的树最大能得到多少,dp[i][1]就是在i的链和不选i的链中最大的那一个。
  然后就是树形DP加上状态转移,dp[i][0]的话状态转移很简单,就是i的所有儿子的dp[i][1]的和就好,但是dp[i][1]这里卡了我老长时间,因为要把所有链上的点的所有非链儿子的dp[i][1]加在一起才行,然后后来想到了用减的方法算,对于某个链上的点x,他的非链儿子的dp[x][1]的和就是他的dp[x][0]减去链上儿子的dp[x][1]就好,所以就是先算出链上所有点的dp[i][0]的和,然后减去除了i的儿子之外链上所有点的dp[i][1]的和就好,再加上除了这个链之外的儿子,就能得到结果了。
  然后算和的话用树链剖分就行。
  好像动态树的话算起来更简单,但是我并不会。。。
 
代码如下:
// ━━━━━━神兽出没━━━━━━
// ┏┓ ┏┓
// ┏┛┻━━━━━━━┛┻┓
// ┃ ┃
// ┃ ━ ┃
// ████━████ ┃
// ┃ ┃
// ┃ ┻ ┃
// ┃ ┃
// ┗━┓ ┏━┛
// ┃ ┃
// ┃ ┃
// ┃ ┗━━━┓
// ┃ ┣┓
// ┃ ┏┛
// ┗┓┓┏━━━━━┳┓┏┛
// ┃┫┫ ┃┫┫
// ┗┻┛ ┗┻┛
//
// ━━━━━━感觉萌萌哒━━━━━━ // Author : WhyWhy
// Created Time : 2015年07月22日 星期三 13时55分13秒
// File Name : 1006.cpp #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h> #pragma comment(linker, "/STACK:1024000000,1024000000") using namespace std; const int MaxN=; struct Edge
{
int to,next;
}; struct Lian
{
int u,v;
int cost;
int next;
}; int N,M; Edge E[MaxN<<];
int head[MaxN],Ecou; Lian L[MaxN];
int Lhead[MaxN],Lcou; int fa[MaxN],dep[MaxN],son[MaxN],siz[MaxN],top[MaxN],w[MaxN];
int Tcou; int C_max[MaxN],C_wu[MaxN]; void init()
{
Ecou=;
Lcou=;
Tcou=;
w[]=;
top[]=;
memset(Lhead,-,sizeof(Lhead));
memset(head,-,sizeof(head));
} void addEdge(int u,int v)
{
E[Ecou].to=v;
E[Ecou].next=head[u];
head[u]=Ecou++;
} int lca(int a,int b)
{
while()
{
if(top[a]==top[b])
return dep[a]<dep[b] ? a : b;
else if(dep[top[a]]>dep[top[b]])
a=fa[top[a]];
else
b=fa[top[b]];
}
} void addLian(int u,int v,int c)
{
int h=lca(u,v); L[Lcou].u=u;
L[Lcou].v=v;
L[Lcou].cost=c;
L[Lcou].next=Lhead[h];
Lhead[h]=Lcou++;
} void dfs1(int u,int pre,int d)
{
int v; dep[u]=d;
fa[u]=pre;
siz[u]=;
son[u]=-; for(int i=head[u];i!=-;i=E[i].next)
if(E[i].to!=pre)
{
v=E[i].to;
dfs1(v,u,d+);
siz[u]+=siz[v]; if(son[u]==- || siz[son[u]]<siz[v])
son[u]=v;
}
} void dfs2(int u)
{
if(son[u]==-)
return; top[son[u]]=top[u];
w[son[u]]=++Tcou; dfs2(son[u]); int v; for(int i=head[u];i!=-;i=E[i].next)
if(E[i].to!=son[u] && E[i].to!=fa[u])
{
v=E[i].to;
top[v]=v;
w[v]=++Tcou;
dfs2(v);
}
} void TL_init()
{
dfs1(,-,);
dfs2();
memset(C_max,,sizeof(C_max));
memset(C_wu,,sizeof(C_wu));
} inline int lowbit(int x)
{
return x&(-x);
} int sum(int x,int C[])
{
int ret=; while(x>)
{
ret+=C[x];
x-=lowbit(x);
} return ret;
} void add(int x,int d,int C[])
{
while(x<=N)
{
C[x]+=d;
x+=lowbit(x);
}
} int query(int u,int v,int C[])
{
int f1=top[u],f2=top[v];
int ret=; while(f1!=f2)
{
if(dep[f1]<dep[f2])
{
swap(f1,f2);
swap(u,v);
} ret+=sum(w[u],C)-sum(w[f1]-,C);
u=fa[f1];
f1=top[u];
} if(dep[u]>dep[v])
swap(u,v); ret+=sum(w[v],C)-sum(w[u]-,C); return ret;
} void update(int u,int ut,int C[])
{
add(w[u],ut,C);
} int dp[MaxN][]; void dfs(int u)
{
int v;
int ans=;
int maxn=,tsum1,tsum2; for(int i=head[u];i!=-;i=E[i].next)
if(E[i].to!=fa[u])
{
dfs(E[i].to);
ans+=dp[E[i].to][];
} for(int h=Lhead[u];h!=-;h=L[h].next)
{
tsum1=query(L[h].u,L[h].v,C_wu);
tsum2=query(L[h].u,L[h].v,C_max);
maxn=max(maxn,tsum1-tsum2+ans+L[h].cost);
} maxn=max(maxn,ans);
dp[u][]=ans;
dp[u][]=maxn; update(u,ans,C_wu);
update(u,maxn,C_max);
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout); int T;
int a,b,c; scanf("%d",&T); while(T--)
{
scanf("%d %d",&N,&M);
init(); for(int i=;i<N;++i)
{
scanf("%d %d",&a,&b);
addEdge(a,b);
addEdge(b,a);
} TL_init(); while(M--)
{
scanf("%d %d %d",&a,&b,&c);
addLian(a,b,c);
} memset(dp,,sizeof(dp));
dfs(); printf("%d\n",dp[][]);
} return ;
}

(中等) HDU 5293 Tree chain problem,树链剖分+树形DP。的更多相关文章

  1. HDU 5293 Train chain Problem - 树链剖分(树状数组) + 线段树+ 树型dp

    传送门 题目大意: 一颗n个点的树,给出m条链,第i条链的权值是\(w_i\),可以选择若干条不相交的链,求最大权值和. 题目分析: 树型dp: dp[u][0]表示不经过u节点,其子树的最优值,dp ...

  2. [HDU 5293]Tree chain problem(树形dp+树链剖分)

    [HDU 5293]Tree chain problem(树形dp+树链剖分) 题面 在一棵树中,给出若干条链和链的权值,求选取不相交的链使得权值和最大. 分析 考虑树形dp,dp[x]表示以x为子树 ...

  3. HDU5293 树链剖分+树形DP

    =-=抓住叶节点往上揪 Tree chain problem Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ...

  4. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

  5. HDU 5293 Tree chain problem

    树状数组 + dp 设$f_i$表示以$i$为根的子树中的能选取的最大和,$sum_x$表示$\sum_{f_y}$  ($y$是$x$的一个儿子),这样子我们把所有给出的链按照两点的$lca$分组, ...

  6. codeforces 671D Roads in Yusland & hdu 5293 Tree chain problem

    dp dp优化 dfs序 线段树 算是一个套路.可以处理在树上取链的问题.

  7. HDU 5293 Tree chain problem 树形DP

    题意: 给出一棵\(n\)个节点的树和\(m\)条链,每条链有一个权值. 从中选出若干条链,两两不相交,并且使得权值之和最大. 分析: 题解 #include <cstdio> #incl ...

  8. Water Tree CodeForces 343D 树链剖分+线段树

    Water Tree CodeForces 343D 树链剖分+线段树 题意 给定一棵n个n-1条边的树,起初所有节点权值为0. 然后m个操作, 1 x:把x为根的子树的点的权值修改为1: 2 x:把 ...

  9. [POJ3237]Tree解题报告|树链剖分|边剖

    关于边剖 之前做的大多是点剖,其实转换到边剖非常简单. 我的做法是每个点的点权记录其到父亲节点的边的边权. 只要solve的时候不要把最上面的点记录在内就可以了. Tree Description Y ...

随机推荐

  1. 获取Excel部分数据并很据项目要求计算适宜性等级综合指数判断该地区的土壤适宜性

    代码运行前请先导入jxl架包,以下代码仅供学习参考: 下图为项目中的Excel: ExcelTest02类代码如下: // 读取Excel的类 import java.io.BufferedWrite ...

  2. Android Skia和2D图形系统 .

    Android Skia 和 2D 图形系统 1 Skia 概述 Skia 是 Google 一个底层的图形.图像.动画. SVG .文本等多方面的图形库,是 Android 中图形系统的引擎. Sk ...

  3. 理解交互设计之"行为设计与对象设计"

    本文是辛向阳教授在<装饰>杂志(大家可以关注这个权威杂志的公众号,分享给大家)2015年第1期公开发表的学术论文,文章探讨的是交互设计研究 思路的转变.这一转变不仅适用于交互设计,也适用于 ...

  4. jQuery checkbox 全选

    jQuery 1.6版本以后 if($("#id").attr("checked")) 不能返回 ture 和 false 高版本中jQuery 提供prop ...

  5. CDN(转载)

    CDN是什么? 谈到CDN的作用,可以用8年买火车票的经历来形象比喻: 8年前,还没有火车票代售点一说,12306.cn更是无从说起.那时候火车票还只能在火车站的售票大厅购买,而我所住的小县城并不通火 ...

  6. Linux -- ls只显示目录

    ls没有直接显示目录的选项, 不过根据目录和文件显示的差异,可以搭配grep来实现 方法1: ll | grep "^d" 方法2: ls -F | grep$ "/$& ...

  7. Problem A: 小火山的跳子游戏 多校训练2(小火山专场)(周期)

    题目链接:http://acm.zzuli.edu.cn/zzuliacm/problem.php?cid=1158&pid=0 zzuli 1905  题意:如果k=1的话是1,2,3,4. ...

  8. Disassembly2:Built-in Type

    先贴一段代码: 跟踪后看到:

  9. SORT函数的使用方法(转载)

    sort函数的用法(转载出处:http://blog.sina.com.cn/s/blog_6439f26f01012xw3.html) 做ACM题的时候,排序是一种经常要用到的操作.如果每次都自己写 ...

  10. Android SERVICE后台服务进程的自启动和保持

    Service组件在android开发中经常遇到,其经常作为后台服务,需要始终保持运行,负责处理一些必要(见不得人)的任务.而一些安全软件,如360等,会有结束进程的功能,如果不做Service的保持 ...