POJ 3111 K Best
二分,排序,贪心。
最优比率生成树,可以二分$+$贪心来实现,不过这样做精度不行。
如果是这样一个问题,该如何解决:问你$n$个里面选择$k$个,能否使得$\frac{{\sum\limits_{j = 1}^k {{v_{{i_j}}}} }}{{\sum\limits_{j = 1}^k {{w_{{i_j}}}} }} ≥ x$。
上述问题等价于问你:$n$个里面选择$k$个,能否使得$\sum\limits_{j = 1}^k {({v_{{i_j}}} - x×{w_{{i_j}}})} ≥ 0$。
也就是说,我们需要令${f_i} = {v_i} - x×{w_i}$,按照${f_i}$从大到小排序,选择前$k$个计算和$sum$。
如果$sum≥0$,也就是说$\frac{{\sum\limits_{j = 1}^k {{v_{{i_j}}}} }}{{\sum\limits_{j = 1}^k {{w_{{i_j}}}} }} ≥ x$成立;否则不成立。
因为这个问题是遵循单调性的,$x$越大可能性越小,因此只要二分$x$,然后验证就可以了。时间复杂度$O(50*n*\log n)$。
特别要注意的是精度问题:
$[1].$计算$sum$的时候,最后要加上一个$eps$,我在这卡了很久精度。
$[2].$二分的话差不多$50$次就可以了,$100$次$TLE$了,也没有必要进行$100$次,因为实际上是只要$\log {10^7}$次。
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<iostream>
using namespace std;
typedef long long LL;
const double pi=acos(-1.0),eps=1e-;
void File()
{
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
}
template <class T>
inline void read(T &x)
{
char c = getchar(); x = ;while(!isdigit(c)) c = getchar();
while(isdigit(c)) { x = x * + c - ''; c = getchar(); }
} const int maxn=;
struct X { int v,w;}s[maxn];
int n,k,ans[maxn];
struct XX {double num; int id;}t[maxn];
double Max; bool cmp(XX a,XX b){ return a.num>b.num; } bool check(double x)
{
for(int i=;i<=n;i++)
{
t[i].num=1.0*s[i].v-x*s[i].w;
t[i].id=i;
}
sort(t+,t++n,cmp); double sum=;
for(int i=;i<=k;i++) sum=sum+t[i].num; if(sum+eps>=)
{
for(int i=;i<=k;i++) ans[i]=t[i].id;
return ;
}
return ;
} int main()
{
while(~scanf("%d%d",&n,&k))
{
for(int i=;i<=n;i++)
scanf("%d%d",&s[i].v,&s[i].w); double L=0.0,R=10000000.0;
int t=;
while(t--)
{
double mid=(L+R)/;
if(check(mid)) L=mid;
else R=mid;
} for(int i=;i<=k;i++)
{
printf("%d",ans[i]);
if(i<k) printf(" "); else printf("\n");
}
}
return ;
}
POJ 3111 K Best的更多相关文章
- poj 3111 K Best 最大化平均值 二分思想
poj 3111 K Best 最大化平均值 二分思想 题目链接: http://poj.org/problem?id=3111 思路: 挑战程序竞赛书上讲的很好,下面的解释也基本来源于此书 设定条件 ...
- POJ 3111 K Best(01分数规划)
K Best Time Limit: 8000MS Memory Limit: 65536K Total Submissions: 9876 Accepted: 2535 Case Time ...
- POJ 3111 K Best(二分答案)
[题目链接] http://poj.org/problem?id=3111 [题目大意] 选取k个物品,最大化sum(ai)/sum(bi) [题解] 如果答案是x,那么有sigma(a)>=s ...
- poj 3111 K Best (二分搜索之最大化平均值之01分数规划)
Description Demy has n jewels. Each of her jewels has some value vi and weight wi. Since her husband ...
- POJ 3111 K Best(最大化平均值)
题目链接:click here~~ [题目大意]有n个物品的重量和价值各自是Wi和Vi.从中选出K个物品使得单位重量的价值最大,输出物品的编号 [解题思路]:最大化平均值的经典.參见click her ...
- POJ - 3111 K Best 0-1分数规划 二分
K Best Time Limit: 8000MS Memory Limit: 65536K Total Submissions: 12812 Accepted: 3290 Case Time ...
- POJ - 3111 K Best(二分)
包含一些ai和bi的集用S来表示,x = max(sigma(ai)/sigma(bi),i 属于S) ,k 表示S的大小,k= |S|. x和k之间具有单调性.k0 < k1 → x0 ≥ x ...
- POJ 3111 K Best ( 二分 )
题意 : 给出 N 个物品的价值和重量,然后要求选出 K 个物品使得选出来物品的单位重量价值最大,最后输出被选物品的编号. 分析 : 很容易去想先算出每个物品的单位价值然后升序排序取前 K 个,但是 ...
- POJ 3111 K Best 最大化平均值 [二分]
1.题意:给一共N个物品,每个物品有重量W,价值V,要你选出K个出来,使得他们的平均单位重量的价值最高 2.分析:题意为最大化平均值问题,由于每个物品的重量不同所以无法直接按单位价值贪心,但是目标值有 ...
随机推荐
- [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]
Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...
- c# 使用Codosys.dll(CDO)发送邮件
准备工作: 从C:\Windows\System32将Codosys.dll拷到你的项目里,然后引用,或者直接引用Com组件也可以 然后看代码 ///<summary> /// 构造函数 ...
- 迟到的 WPF 学习 —— 布局
布局是 WPF 很重头的一部分内容,这一部分梳理和记录关于布局章节的知识点. 1. WPF 使用一种基于流(Flow-based)的概念来处理布局逻辑,将传统的基于"坐标"的思想尽 ...
- 图解Javascript引用类型之数组
以图说事明理,恰当时候会事半功陪.今天我就尝试着用图的方式讲讲“JavaScript引用类型之数组”.望更多童鞋给我反馈! 好东西分享给大家,但要尊重事实!!!因此特别说明:本图非我本人亲自所作,乃我 ...
- MVC test
1,index @{ ViewBag.Title = "Index"; } <!DOCTYPE html> <html> <head> < ...
- phantomjs初次认识
phantomjs初次认识 最近没什么重要的任务,就抽空看了看项目组爬虫小组的代码,因为我们的爬虫主要是以python的scrapy框架为主,看起来比较方便.在看代码的时候看到一个叫phantomjs ...
- Socket的粘包处理
Socket的粘包处理 当socket接收到数据后,会根据buffer的大小一点一点的接收数据,比如: 对方发来了1M的数据量过来,但是,本地的buffer只有1024字节,那就代表socket需要重 ...
- ZOJ 1204 一个集合能组成多少个等式
Additive equations Time Limit : 20000/10000ms (Java/Other) Memory Limit : 65536/32768K (Java/Other ...
- Jquery控制点击时一、二级菜单自由隐藏与出现
一.基本HTML和CSS HTML中产生一.二级导航的代码: {loop $nav $key $value} <div class=”u_con”> <span class=” xg ...
- JavaScript中null和undefined
JavaScript的数据类型大体分为两类:原始类型和对象类型.其中,原始类型包括数字.字符串和布尔值.此外,JavaScript中还有两个特殊的原始值:null(空)和undefined(未定义), ...