如果枚举每个套餐,并每次都求最小生成树,总时间复杂度会很高,因而需要先求一次原图的最小生成树,则枚举套餐之后需要考虑的边大大减少了。

具体见代码:

#include<cstdio>
#include<cmath>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std; const int maxn = + ;
const int maxq = ;
int n;
int x[maxn], y[maxn], cost[maxq];
vector<int> subn[maxq]; int pa[maxn];
int findset(int x) { return pa[x] != x ? pa[x] = findset(pa[x]) : x; } struct Edge {
int u, v, d;
Edge(int u, int v, int d):u(u),v(v),d(d) {}
bool operator < (const Edge& rhs) const {
return d < rhs.d;
}
}; // initialize pa and sort e before calling this method
// cnt is the current number of components
int MST(int cnt, const vector<Edge>& e, vector<Edge>& used) {
if(cnt == ) return ;
int m = e.size();
int ans = ;
used.clear();
for(int i = ; i < m; i++) {
int u = findset(e[i].u), v = findset(e[i].v);
int d = e[i].d;
if(u != v) {
pa[u] = v;
ans += d;
used.push_back(e[i]);
if(--cnt == ) break;
}
}
return ans;
} int main() {
int T, q;
scanf("%d", &T);
while(T--) {
scanf("%d%d", &n, &q);
for(int i = ; i < q; i++) {
int cnt;
scanf("%d%d", &cnt, &cost[i]);
subn[i].clear();
while(cnt--) {
int u;
scanf("%d", &u);
subn[i].push_back(u-);
}
}
for(int i = ; i < n; i++) scanf("%d%d", &x[i], &y[i]); vector<Edge> e, need;
for(int i = ; i < n; i++)
for(int j = i+; j < n; j++) {///建图
int c = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
e.push_back(Edge(i, j, c));
} for(int i = ; i < n; i++) pa[i] = i;
sort(e.begin(), e.end());///排序 int ans = MST(n, e, need);///第一次求原图
for(int mask = ; mask < (<<q); mask++) {
/// union cities in the same sub-network
for(int i = ; i < n; i++) pa[i] = i;
int cnt = n, c = ;
for(int i = ; i < q; i++) if(mask & (<<i)) {
c += cost[i];
for(int j = ; j < subn[i].size(); j++) {
int u = findset(subn[i][j]), v = findset(subn[i][]);
if(u != v) { pa[u] = v; cnt--; }
}
}
vector<Edge> dummy;
ans = min(ans, c + MST(cnt, need, dummy));///cnt表示剩余的城市数量,比较每次添加套餐和不添加套餐的花费
}
printf("%d\n", ans);
if(T) printf("\n");
}
return ;
}

Buy or Build(UVa1151)的更多相关文章

  1. POJ(2784)Buy or Build

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1369   Accepted: 542 Descr ...

  2. Buy or Build (poj 2784 最小生成树)

    Buy or Build Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 1348   Accepted: 533 Descr ...

  3. UVa1151 Buy or Build

    填坑(p.358) 以前天真的以为用prim把n-1条边求出来就可以 现在看来是我想多了 #include<cstdio> #include<cstring> #include ...

  4. 【最小生成树+子集枚举】Uva1151 Buy or Build

    Description 平面上有n个点(1<=N<=1000),你的任务是让所有n个点连通,为此,你可以新建一些边,费用等于两个端点的欧几里得距离的平方. 另外还有q(0<=q< ...

  5. 洛谷 题解 UVA1151 【买还是建 Buy or Build】

    [题意] 平面上有\(n(n<=1000)\)个点,你的任务是让所有n个点联通.为此,你可以新建一些边,费用等于两个端点的欧几里得距离平方.另外还有\(q(q<=8)\)个套餐可以购买,如 ...

  6. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  7. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  8. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  9. UVa 1151 (枚举 + MST) Buy or Build

    题意: 平面上有n个点,现在要把它们全部连通起来.现在有q个套餐,如果购买了第i个套餐,则这个套餐中的点全部连通起来.也可以自己单独地建一条边,费用为两点欧几里得距离的平方.求使所有点连通的最小费用. ...

随机推荐

  1. 等积投影(equal-area projection)

    等积投影(equal-area projection)是地图投影的一种,是地图上任何图形面积经主比例尺放大以后与实地上相应图形面积保持大小不变的一类投影.即投影面积与实地面积相等的投影——面积比为1. ...

  2. Ubuntu 17.04版本下,opencv进行源码编译安装

    本文主要针对Ubuntu 17.04版本下,opencv进行源码编译安装.开发环境主要针对python 对 openCV库的调用. 安装 gcc cmake 编译环境 sudo apt-get ins ...

  3. Java Spring 在线程中或其他位置获取 ApplicationContext 或 ServiceBean

    部分一转载自:http://blog.csdn.net/yang123111/article/details/32099329 via @yang123111 部分二转载自:http://www.cn ...

  4. 20145338 《网络对抗》逆向及Bof基础实验

    逆向及Bof基础实验 实践目标 ·本次实践的对象是一个名为pwn1的linux可执行文件. ·该程序正常执行流程是:main调用foo函数,foo函数会简单回显任何用户输入的字符串. ·该程序同时包含 ...

  5. .net正则匹配

    char[] weixin = txtweixinhao.Text.Trim().ToCharArray(); for (int i = 0; i < weixin.Length; i++) i ...

  6. 开源代码chat_master分析

  7. 深度解析synchronized的实现原理(并发一)

    一.synchronized实现原理 1.synchronized实现同步的基础: 1).普通同步方法:锁是当前实例对象 2).静态同步方法:锁是当前类的class对象 3).同步方法块:锁是括号里面 ...

  8. 【转载】IL指令集

    转载自:http://www.cnblogs.com/knowledgesea/p/5461040.html 名称 说明 Add 将两个值相加并将结果推送到计算堆栈上. Add.Ovf 将两个整数相加 ...

  9. CentOS6.5 - linux在虚拟机连接主机(使用nat)

    NAT模式:是虚拟系统借助NAT(网络地址转换)功能,通过宿主机器所在的网络来访问公网.也就是说,使用NAT模式可以实现在虚拟系统里访问互联网. NAT模式下的虚拟系统的TCP/IP配置信息是由VMn ...

  10. 为什么Python是最适合初创公司的编程语言?

    为什么Python是最适合初创公司的编程语言? 选自Medium 作者:Gleb Pushkov 京东云开发者社区编译 对于初创公司而言,要在众多编程语言中为公司选择一个正确.合适的语言绝非易事. 如 ...