opencv学习之路(41)、人脸识别
一、人脸检测并采集个人图像
//take_photo.cpp
#include<opencv2/opencv.hpp>
using namespace cv;
using namespace std; void take_photo() {
VideoCapture cap(); //打开摄像头
if (!cap.isOpened())
return; //加载级联检测器
CascadeClassifier cascade;
cascade.load("F:/opencv3.2/Release_x64/etc/haarcascades/haarcascade_frontalface_alt_tree.xml"); Mat frame;
vector<Rect>faces;
int count = ;
while (cap.read(frame)) //相当于cap >> frame
{
cascade.detectMultiScale(frame, faces, 1.1, , , Size(, ), Size(, ));//检测是否有人脸
for (int i = ; i < faces.size(); i++)
{
if (count % == ) { //每10帧保存一次人脸图像
Mat dst;
resize(frame(faces[i]), dst, Size(, ));//设置人脸图像大小
cvtColor(dst, dst, COLOR_BGR2GRAY);//转为灰度图节省计算
imwrite(format("att_faces/s41/pic%d.jpg", count / ), dst);
}
rectangle(frame, faces[i], Scalar(, , ));
}
imshow("video", frame); //按下任意键退出摄像头(waitkey在本系统环境下默认为255),或者是保存了20张人脸图片后,退出
if (waitKey() != || count / >)
break;
count++;
}
cap.release();
destroyAllWindows();//关闭所有窗口
}
运行程序,打开摄像头后会自动保存人脸图像,头不要晃动,表情变化即可,对于不合适的照片还需进行筛选。
二、基于特征脸算法的人脸识别
//face_recognition.cpp
#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp> using namespace cv;
using namespace cv::face;
using namespace std; double face_recognition() {
//读取文件,转换为数据流
string filename = string("at.txt");
ifstream file(filename.c_str(), ifstream::in);
if (!file)
cout << "error" << endl; string line, path, classlabel;
vector<Mat>image;
vector<int>labels;
char separator = ';';
while (getline(file, line))
{
stringstream liness(line);
getline(liness, path, separator);
getline(liness, classlabel);
if (!path.empty() && !classlabel.empty())
{
//cout << "path:" << path<< endl;
image.push_back(imread(path, ));
labels.push_back(atoi(classlabel.c_str()));
}
}
if (image.size() < || labels.size() < )
cout << "invalid image path..." << endl; //最后一个人为测试样本
Mat testSample = image[image.size() - ];
int testLabel = labels[labels.size() - ];
image.pop_back();
labels.pop_back(); //EigenFace算法的模型训练
Ptr<BasicFaceRecognizer>model = createEigenFaceRecognizer();
model->train(image, labels); //对样本进行识别
int predictLabel = model->predict(testSample);
cout << "actual label:" << testLabel << ",predict label:" << predictLabel << endl; //加载级联检测器
CascadeClassifier cascade;
cascade.load("haarcascade_frontalface_alt_tree.xml");//识别时用alt_tree分类器,宁可漏检也不误检 //打开摄像头
VideoCapture cap();
if (!cap.isOpened())
cout << "error..."; Mat frame;
vector<Rect>faces;
int correct = , total = ;
while (cap.read(frame)) //相当于cap >> frame,读取摄像头的每一帧
{
cascade.detectMultiScale(frame, faces, 1.1, , , Size(, ), Size(, ));//检测是否有人脸
for (int i = ; i < faces.size(); i++)
{
Mat roi = frame(faces[i]);
cvtColor(roi, roi, COLOR_BGR2GRAY);
resize(roi, testSample, testSample.size());
int label = model->predict(testSample);
rectangle(frame, faces[i], Scalar(, , ));
if (label == )
{
putText(frame, "ZhangChunFu", faces[i].tl(), FONT_HERSHEY_COMPLEX, 1.0, Scalar(, , ));
correct++;
}
else
putText(frame, format("%d", label), faces[i].tl(), CV_FONT_HERSHEY_SIMPLEX, 0.8, Scalar(, , ));
}
total++;
imshow("人脸识别——MR.Zhang", frame);
if (waitKey() == )
break;
} cap.release();
destroyAllWindows();//关闭所有窗口
waitKey(); double rate = (1.0*correct) / total;
return rate;//返回正确率
}
//main.cpp
#include <opencv2/opencv.hpp>
#include <opencv2/face.hpp>
#include <iostream> using namespace cv;
using namespace cv::face;
using namespace std; void take_photo();
double face_recognition(); void main() {
int flag;
double rate;
cout << "欢迎使用人脸识别系统(1代表录入人脸,2代表识别人脸),请输入您的选择:" << endl;
cin >> flag;
cout << "请稍等片刻……"<<endl;
switch (flag)
{
case :take_photo();
return;
case :
rate=face_recognition();
break;
default:
break;
}
cout << "识别率:" << rate << endl;
system("pause"); }
opencv学习之路(41)、人脸识别的更多相关文章
- opencv学习之路(40)、人脸识别算法——EigenFace、FisherFace、LBPH
一.人脸识别算法之特征脸方法(Eigenface) 1.原理介绍及数据收集 特征脸方法主要是基于PCA降维实现. 详细介绍和主要思想可以参考 http://blog.csdn.net/u0100066 ...
- OpenCV进阶之路:神经网络识别车牌字符
1. 关于OpenCV进阶之路 前段时间写过一些关于OpenCV基础知识方面的系列文章,主要内容是面向OpenCV初学者,介绍OpenCV中一些常用的函数的接口和调用方法,相关的内容在OpenCV的手 ...
- 使用 HTML5, javascript, webrtc, websockets, Jetty 和 OpenCV 实现基于 Web 的人脸识别
这是一篇国外的文章,介绍如何通过 WebRTC.OpenCV 和 WebSocket 技术实现在 Web 浏览器上的人脸识别,架构在 Jetty 之上. 实现的效果包括: 还能识别眼睛 人脸识别的核心 ...
- 用opencv做的静态图片人脸识别
这次给大家分享一个图像识别方面的小项目,主要功能是识别图像中的人脸并根据人脸在图片库找出同一个与它最相似的图片,也就是辨别不同的人. 环境:VS2013+opencv2.4.13 主要是算法:open ...
- 我的opencv之旅:ios人脸识别
学习opencv有一年多了,这本来是我的毕业设计的一部分,但是因为不能突出专业重点,所以换了个课题. opencv在vc.android.ios下都能用,其中vc和android下的教程和主题贴最多, ...
- 可学习的多人人脸识别程序(基于Emgu CV)
源代码下载(需要安装Emgu CV,安装方法请百度) 很多朋友使用Emgu CV遇到CvInvoke()的报错,我找到一种解决方法. 把EmguCV目录下bin里面的所有dll复制到C:\WINDOW ...
- ng-深度学习-课程笔记-14: 人脸识别和风格迁移(Week4)
1 什么是人脸识别( what is face recognition ) 在相关文献中经常会提到人脸验证(verification)和人脸识别(recognition). verification就 ...
- python3+opencv+tkinter开发简单的人脸识别小程序
学校里有门图像处理的课程最终需要提交一个图像处理系统, 正好之前对于opencv有些了解,就简单的写一个人脸识别小程序吧 效果图如下 笔者IDE使用Pycharm,GUI编程直接使用内置的tkinte ...
- openCV+ASM+LBP+Gabor实现人脸识别(GT人脸库)
原理:使用GT人脸库做样本,VS2010下使用openCV2.44自带的Haar算法检測人脸区域,ASM Library特征检測,然后使用YCrCb颜色空间做肤色检測,再用LBP+Gabor小波提取特 ...
随机推荐
- 如何print 输出不换行(2 和 3 处理方式 不一样)
2.7 正常情况下print输出的时候会自动进行换行处理,我们肯定有时候会有输出不换行的需求, 下面开始介绍如何不换行输出: 例子: print("hello world") ...
- Python——开发一个自动化微信投票器【附代码实例方法】
一个研究Python实践,最近研究一个投票的东东,主要是想测试利用Python实现刷微信投票. 本文纯粹为了记录一下 webdriver直接操作页面按钮的方法: #!/usr/bin/python # ...
- vue设置背景图片
现在data里面定义: note: { backgroundImage: "url(" + require("../../assets/home/bigdatabak.p ...
- idea将maven项目打包成war包
1.单击红色方框处 2.在IDEA右侧出现maven project选项 3.单击maven project选项,出现Spring MVC Basic Feature菜单,选择 其中的Lifecycl ...
- luogu4643 [国家集训队]阿狸和桃子的游戏
题目链接:洛谷 这道题乍一看非常的难,而且题目标题上的标签让人很害怕. 但其实这道题并不难写(只要想到了...emm) 因为我们只需要知道两个人得分之差,所以我们可以对条件进行变换. 我们将边权平分到 ...
- python练习题-day19
1.将字符串的时间"2017-10-10 23:40:00"转换为时间戳和时间元组 import time s="2017-10-10 23:40:00" st ...
- css实现礼券效果
<template> <div class="demo"> <div class="stamp stamp01"> < ...
- PowerBI/Excel - PowerQuery数据转换系列 - 如何将多行的值串联到一行 - 行列转换
Power Query 是做数据转换.数据清洗的利器,不管是在Excel还是PowerBI,如何玩好Power Query是成功建模的必不可少的一步. 今天要get到的一个新技巧:行列转换 如何将多行 ...
- canal 代码阅读
涉及到有边界队列,无边界队列.poolSize.corePoolSize.maximumPoolSize 三者参数含义 If there are more than corePoolSize but ...
- OO第一单元表达式求导作业总结
第一次作业 功能描述: 对输入的表达式进行求导计算和格式正误判断 思路: 一开始的想法是想写一个大正则找到一个通项式,通过这个多项式来判断WRONG FORMAT,结果发现正则写的总是不完善,会漏 ...