tensorflow:保存与读取网络结构,参数
训练一个神经网络的目的是啥?不就是有朝一日让它有用武之地吗?可是,在别处使用训练好的网络,得先把网络的参数(就是那些variables)保存下来,怎么保存呢?其实,tensorflow已经给我们提供了很方便的API,来帮助我们实现训练参数的存储与读取,如果想了解详情,请看晦涩难懂的官方API,接下来我简单介绍一下我的理解。
保存与读取数据全靠下面这个类实现:
class tf.train.Saver
当我们需要存储数据时,下面2条指令就够了
saver = tf.train.Saver()
save_path = saver.save(sess, model_path)
然后怎么读取数据呢?看下面
saver = tf.train.Saver()
load_path = saver.restore(sess, model_path)
和存储数据神似啊!不再赘述。
下面是重点!关于tf.train.Saver()使用的几点小心得!
- 1、save方法在实现数据读取时,它仅仅读数据,关键是得有一些提前声明好的variables来接受这些数据,因此,当save读取数据到sess时,需要提前声明与数据匹配的variables,否则程序就报错了。
- 2、save读取的数据不需要initialize。
- 3、目前想到的就这么多,随时补充。
为了对数据存储和读取有更直观的认识,我自己写了两个实验小程序,下面是第一个,训练网络并存储数据,用的MNIST数据集
import tensorflow as tf
import sys # load MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('data', one_hot=True) # 一些 hyper parameters
activation = tf.nn.relu
batch_size = 100
iteration = 20000
hidden1_units = 30
# 注意!这里是存储路径!
model_path = sys.path[0] + '/simple_mnist.ckpt' X = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10]) W_fc1 = tf.Variable(tf.truncated_normal([784, hidden1_units], stddev=0.2))
b_fc1 = tf.Variable(tf.zeros([hidden1_units]))
W_fc2 = tf.Variable(tf.truncated_normal([hidden1_units, 10], stddev=0.2))
b_fc2 = tf.Variable(tf.zeros([10])) def inference(img):
fc1 = activation(tf.nn.bias_add(tf.matmul(img, W_fc1), b_fc1))
logits = tf.nn.bias_add(tf.matmul(fc1, W_fc2), b_fc2)
return logits def loss(logits, labels):
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits, labels)
loss = tf.reduce_mean(cross_entropy)
return loss def evaluation(logits, labels):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return accuracy logits = inference(X)
loss = loss(logits, y_)
train_op = tf.train.AdamOptimizer(1e-4).minimize(loss)
accuracy = evaluation(logits, y_) # 先实例化一个Saver()类
saver = tf.train.Saver()
init = tf.initialize_all_variables() with tf.Session() as sess:
sess.run(init)
for i in xrange(iteration):
batch = mnist.train.next_batch(batch_size)
if i%1000 == 0 and i:
train_accuracy = sess.run(accuracy, feed_dict={X: batch[0], y_: batch[1]})
print "step %d, train accuracy %g" %(i, train_accuracy)
sess.run(train_op, feed_dict={X: batch[0], y_: batch[1]})
print '[+] Test accuracy is %f' % sess.run(accuracy, feed_dict={X: mnist.test.images, y_: mnist.test.labels})
# 存储训练好的variables
save_path = saver.save(sess, model_path)
print "[+] Model saved in file: %s" % save_path
接下来是读取数据并做测试!
import tensorflow as tf
import sys from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('data', one_hot=True) activation = tf.nn.relu
hidden1_units = 30
model_path = sys.path[0] + '/simple_mnist.ckpt' X = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10]) W_fc1 = tf.Variable(tf.truncated_normal([784, hidden1_units], stddev=0.2))
b_fc1 = tf.Variable(tf.zeros([hidden1_units]))
W_fc2 = tf.Variable(tf.truncated_normal([hidden1_units, 10], stddev=0.2))
b_fc2 = tf.Variable(tf.zeros([10])) def inference(img):
fc1 = activation(tf.nn.bias_add(tf.matmul(img, W_fc1), b_fc1))
logits = tf.nn.bias_add(tf.matmul(fc1, W_fc2), b_fc2)
return logits def evaluation(logits, labels):
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
return accuracy logits = inference(X)
accuracy = evaluation(logits, y_) saver = tf.train.Saver() with tf.Session() as sess:
# 读取之前训练好的数据
load_path = saver.restore(sess, model_path)
print "[+] Model restored from %s" % load_path
print '[+] Test accuracy is %f' % sess.run(accuracy, feed_dict={X: mnist.test.images, y_: mnist.test.labels})
转:https://www.jianshu.com/p/83fa3aa2d0e9
tensorflow:保存与读取网络结构,参数的更多相关文章
- TensorFlow学习笔记(8)--网络模型的保存和读取【转】
转自:http://blog.csdn.net/lwplwf/article/details/62419087 之前的笔记里实现了softmax回归分类.简单的含有一个隐层的神经网络.卷积神经网络等等 ...
- 学习TensorFlow,TensorBoard可视化网络结构和参数
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...
- TensorFlow学习笔记:保存和读取模型
TensorFlow 更新频率实在太快,从 1.0 版本正式发布后,很多 API 接口就发生了改变.今天用 TF 训练了一个 CNN 模型,结果在保存模型的时候居然遇到各种问题.Google 搜出来的 ...
- Tensorflow实现LeNet-5、Saver保存与读取
一. LeNet-5 LeNet-5是一种用于手写体字符识别的非常高效的卷积神经网络. 卷积神经网络能够很好的利用图像的结构信息. 卷积层的参数较少,这也是由卷积层的主要特性即局部连接和共享权重所决定 ...
- Sklearn,TensorFlow,keras模型保存与读取
一.sklearn模型保存与读取 1.保存 from sklearn.externals import joblib from sklearn import svm X = [[0, 0], [1, ...
- Tensorflow保存神经网络参数有妙招:Saver和Restore
摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一. ...
- 10 Tensorflow模型保存与读取
我们的模型训练出来想给别人用,或者是我今天训练不完,明天想接着训练,怎么办?这就需要模型的保存与读取.看代码: import tensorflow as tf import numpy as np i ...
- Tensorflow创建和读取17flowers数据集
http://blog.csdn.net/sinat_16823063/article/details/53946549 Tensorflow创建和读取17flowers数据集 标签: tensorf ...
- iOS 保存、读取与应用状态
固化 对于大多数iOS应用,可以将其功能总结为:提供一套界面,帮助用户管理特定的数据.在这一过程中,不同类型的对象要各司其职:模型对象负责保存数据,视图对象负责显示数据,控制器对象负责在模型对象与视图 ...
随机推荐
- CF Round #551 (Div. 2) D
CF Round #551 (Div. 2) D 链接 https://codeforces.com/contest/1153/problem/D 思路 不考虑赋值和贪心,考虑排名. 设\(dp_i\ ...
- HDU 4348 To the moon(主席树 区间更新)题解
题意: 给一个数组A[1] ~ A[n],有4种操作: Q l r询问l r区间和 C l r v给l r区间每个数加v H l r t询问第t步操作的时候l r区间和 B t返回到第t步操作 思路: ...
- 论文笔记:Prediction-Tracking-Segmentation
Prediction-Tracking-Segmentation 2019-04-09 18:47:30 Paper:https://arxiv.org/pdf/1904.03280.pdf 之所以要 ...
- 阿里云Hadoop集群DataNode连接不上NameNode
在logs日志中可以看见DataNode多次去连NameNode,但是都失败了. 经过长时间的研究百度,终于知道了原因. 原因就是安全组限制了端口的开放,所以我们只要把相应的端口打开即可.
- kali linux 使用笔记本快捷键调节音量
环境:kali 2018.3a(xface桌面版),自带PulseAudio控制音量. 以前在windows时笔记本是Fn+F1这些来调节音量的,装了kali后原来调节亮度.触控板的键还能用,唯独音量 ...
- 2.1 maven配置多镜像地址
背景: 自己在平时写项目用的是阿里的镜像地址,而在开发公司的项目是用的是公司提供的镜像地址,这就导致了每次使用的时候 都需要来回的修改maven的settings.xml文件,这样很容易出错,而且还浪 ...
- xshell 使用root 连接ubuntu server
下载一个虚拟机,安装Ubuntu server 下载一个xshell 第一步 :先使用账号登录 第二步:给root设置初始密码 sudo passwd root 第三步:切换root 账户,使用vi ...
- 学习笔记70—Photoshop画齿轮
具体步骤如下: 1)选择多边形工具: 2)设置齿轮个数及颜色相应参数: 3)画出模型: 4)找到上图模型的中心 (借助:ctrl + T),选择椭圆工具,并 长按Shift+Alt, 画出圆: 5) ...
- [python]Python代码安全分析工具(Bandit)
简介: Bandit是一款Python源码分析框架,可用于Python代码的安全性分析.Bandit使用标准库中的ast模块,将Python源码解析成Python语法节点构成的树.Bandit允许用户 ...
- app在admin中显示成我们想要的中文名
在django的开发中,很多时候我们希望app在admin中显示成我们想要的中文名,而不是显示默认的app_label名称. 比如我们有一个blog应用,在我们的blog app目录下面,默认会生成一 ...