在被两题卡了常数之后,花了很久优化了自己的模板

现在的一般来说任意模数求逆1s跑3e5,exp跑1e5是没啥问题的(自己电脑,可能比luogu慢一倍)

当模数是$998244353,1004535809,9985661441$的时候(这$3$个的原根都是$3$)

我们会使用$ntt$来求解

$ntt$的模板本身常数不大 优化效果不明显

const int mo=;
const int G=;
IL int fsp(int x,int y)
{
ll now=;
while (y)
{
if (y&) now=now*x%mo;
x=1ll*x*x%mo;
y>>=;
}
return now;
}
IL void ntt_init()
{
l=; for (n=;n<=m;n<<=) l++;
for (int i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
}
IL void clear()
{
for (int i=;i<=n;i++) a[i]=b[i]=;
}
void ntt(int *a,int o)
{
for (int i=;i<n;i++) if (i>r[i]) swap(a[i],a[r[i]]);
for (int i=;i<n;i<<=)
{
int wn=fsp(G,(mo-)/(i*)); w[]=;
rep(j,,i-) w[j]=(1ll*w[j-]*wn)%mo;
for (int j=;j<n;j+=(i*))
for (int k=;k<i;k++)
{
int x=a[j+k],y=1ll*a[i+j+k]*w[k]%mo;
a[j+k]=(x+y)%mo; a[i+j+k]=(x-y)%mo;
}
}
if (o==-)
{
reverse(&a[],&a[n]);
for (int i=,inv=fsp(n,mo-);i<n;i++)
a[i]=1ll*a[i]*inv%mo;
}
}
IL void getcj(int *A,int *B,int len)
{
m=len*2; ntt_init();
for (int i=0;i<len;i++) a[i]=A[i],b[i]=B[i];
ntt(a,1); ntt(b,1);
for(int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%mo;
ntt(a,-1);
for (int i=0;i<len;i++) B[i]=a[i];
clear();
}
 

当模数不为这$3$个,我们就需要$mtt$来实现

而$mtt$的实现为用$mx$的方法将数的实部虚部分别放$x \& 65536,x(>>15)$

另外一个重要的地方是要预处理出$w$,我们采用指针来存,避免使用vector

代码$p$的初始值为$2*n$

所有数组大小为$4*n$

$getcj$的时候要先把数组中的负数变正

IL void clear()
{
for (int i=;i<=n;i++) a[i].a=a[i].b=b[i].a=b[i].b=c[i].a=c[i].b=d[i].a=d[i].b=;
}
cp *w[N],tmp[N*];
int p;
IL void init()
{
cp *now=tmp;
for (int i=;i<=p;i<<=)
{
w[i]=now;
for (int j=;j<i;j++) w[i][j]=(cp){cos(pi*j/i),sin(pi*j/i)};
now+=i;
}
}
IL void fft_init()
{
l=; for (n=;n<=m;n<<=) l++;
for (int i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
}
void fft(cp *a,int o)
{
for (int i=;i<n;i++) if (i>r[i]) swap(a[i],a[r[i]]);
for (int i=;i<n;i<<=)
for (int j=;j<n;j+=(i*))
{
cp *x1=a+j,*x2=a+i+j,*W=w[i];
for (int k=;k<i;k++,x1++,x2++,W++)
{
cp x=*x1,y=(cp){(*W).a,(*W).b*o}*(*x2);
*x1=x+y,*x2=x-y;
}
}
if (o==-) for(int i=;i<n;i++) a[i].a/=n;
}
IL void getcj(int *A,int *B,int len)
{
rep(i,,len)
{
A[i]=(A[i]+mo)%mo,B[i]=(B[i]+mo)%mo;
}
for (int i=;i<len;i++)
{
a[i]=(cp){A[i]&,A[i]>>};
b[i]=(cp){B[i]&,B[i]>>};
}
m=len*; fft_init();
fft(a,); fft(b,);
for (int i=;i<n;i++)
{
int j=(n-)&(n-i);
c[j]=(cp){0.5*(a[i].a+a[j].a),0.5*(a[i].b-a[j].b)}*b[i];
d[j]=(cp){0.5*(a[i].b+a[j].b),0.5*(a[j].a-a[i].a)}*b[i];
}
fft(c,); fft(d,);
double inv=ee/n;
rep(i,,n) c[i].a*=inv,c[i].b*=inv;
rep(i,,n) d[i].a*=inv,d[i].b*=inv;
rep(i,,len)
{
ll a1=c[i].a+0.5,a2=c[i].b+0.5;
ll a3=d[i].a+0.5,a4=d[i].b+0.5;
B[i]=(a1+((a2+a3)%mo<<)+((a4%mo)<<))%mo;
}
clear();
}

对于其他的多项式函数

用$fft$还是$ntt$是差不多的(除了数组类型)

fft,ntt的更多相关文章

  1. FFT \ NTT总结(多项式的构造方法)

    前言.FFT  NTT 算法 网上有很多,这里不再赘述. 模板见我的代码库: FFT:戳我 NTT:戳我 正经向:FFT题目解题思路 \(FFT\)这个玩意不可能直接裸考的..... 其实一般\(FF ...

  2. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  3. FFT/NTT/MTT学习笔记

    FFT/NTT/MTT Tags:数学 作业部落 评论地址 前言 这是网上的优秀博客 并不建议初学者看我的博客,因为我也不是很了解FFT的具体原理 一.概述 两个多项式相乘,不用\(N^2\),通过\ ...

  4. FFT&NTT总结

    FFT&NTT总结 一些概念 \(DFT:\)离散傅里叶变换\(\rightarrow O(n^2)\)计算多项式卷积 \(FFT:\)快速傅里叶变换\(\rightarrow O(nlogn ...

  5. 快速构造FFT/NTT

    @(学习笔记)[FFT, NTT] 问题概述 给出两个次数为\(n\)的多项式\(A\)和\(B\), 要求在\(O(n \log n)\)内求出它们的卷积, 即对于结果\(C\)的每一项, 都有\[ ...

  6. FFT/NTT模板 既 HDU1402 A * B Problem Plus

    @(学习笔记)[FFT, NTT] Problem Description Calculate A * B. Input Each line will contain two integers A a ...

  7. FFT/NTT基础题总结

    在学各种数各种反演之前把以前做的$FFT$/$NTT$的题整理一遍 还请数论$dalao$口下留情 T1快速傅立叶之二 题目中要求求出 $c_k=\sum\limits_{i=k}^{n-1}a_i* ...

  8. $FFT/NTT/FWT$题单&简要题解

    打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...

  9. FFT&NTT数学解释

    FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介 ...

  10. HDU-4609(FFT/NTT)

    HDU-4609(FFT/NTT) 题意: 给出n个木棒,现从中不重复地选出3根来,求能拼出三角形的概率. 计算合法概率容易出现重复,所以建议计算不合法方案数 枚举选出的最大边是哪条,然后考虑剩下两条 ...

随机推荐

  1. Python——socketserver编程(客户端/服务器)

    一.socketserver是标准库中的高级模块,它的目标是简化很多多样板代码,是创建网络客户端和服务器所必须的代码.(事件驱动) 二.模块类 BaseServer :包含核心服务器功能和mix-in ...

  2. nginx(二)nginx的安装

    下载 nginx官网下载地址 把源码解压缩之后,在终端里运行如下命令: ./configure make make install 默认情况下,Nginx 会被安装在 /usr/local/nginx ...

  3. 18.flannel的配置

    Kubernetes网络通信: (1) 容器间通信:同一个Pod内的多个容器间的通信, lo (2) Pod通信:Pod IP <--> Pod IP (3) Pod与Service通信: ...

  4. GitHub修改用户名

    刚开始用github时随便起了个名字,现在想修改名字了,自己研究了半天终于找到修改地方 1.点击settings 2.点击Account的Change username 3.点击下面红色的按钮 4.在 ...

  5. FileZilla-02

    WordPress的权限方案 通常,所有文件应由您的Web服务器上的用户(ftp)帐户拥有,并且应该可由该帐户写入.在共享主机上,文件永远不应归Web服务器进程本身所有(有时这是www,或apache ...

  6. 【LOJ565】【LibreOJ Round #10】mathematican 的二进制 DP 分治FFT

    题目大意 有一个无限长的二进制串,初始时它的每一位都为 \(0\).现在有 \(m\) 个操作,其中第 \(i\) 个操作是将这个二进制串的数值加上 \(2^{a_i}\).我们称每次操作的代价是这次 ...

  7. 【LOJ6060】【2017 山东一轮集训 Day1 / SDWC2018 Day1】Set 线性基

    题目大意 给出 \(n\) 个非负整数,将数划分成两个集合,记为一号集合和二号集合.\(x_1\) 为一号集合中所有数的异或和,\(x_2\) 为二号集合中所有数的异或和.在最大化 \(x_1 + x ...

  8. 学习Spring Boot:(十五)使用Lombok来优雅的编码

    前言 Lombok 是一种 Java™ 实用工具,可用来帮助开发人员消除 Java 的冗长,尤其是对于简单的 Java 对象(POJO).它通过注解实现这一目的. 正文 添加依赖 在 pom.xml ...

  9. openstack——删除网络

    #!/bin/bash #delete vm for vim in `nova list |awk '{if( NR > 2 ) {print $2}}'`;do nova delete $vi ...

  10. day08读取文件

    可参考;https://www.cnblogs.com/gengcx/p/6713646.html主要内容: 1.只读 2.只写 3.追加 4.r+读写 5.w+写读 6.a+写读 7.其他一.使用p ...