在被两题卡了常数之后,花了很久优化了自己的模板

现在的一般来说任意模数求逆1s跑3e5,exp跑1e5是没啥问题的(自己电脑,可能比luogu慢一倍)

当模数是$998244353,1004535809,9985661441$的时候(这$3$个的原根都是$3$)

我们会使用$ntt$来求解

$ntt$的模板本身常数不大 优化效果不明显

const int mo=;
const int G=;
IL int fsp(int x,int y)
{
ll now=;
while (y)
{
if (y&) now=now*x%mo;
x=1ll*x*x%mo;
y>>=;
}
return now;
}
IL void ntt_init()
{
l=; for (n=;n<=m;n<<=) l++;
for (int i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
}
IL void clear()
{
for (int i=;i<=n;i++) a[i]=b[i]=;
}
void ntt(int *a,int o)
{
for (int i=;i<n;i++) if (i>r[i]) swap(a[i],a[r[i]]);
for (int i=;i<n;i<<=)
{
int wn=fsp(G,(mo-)/(i*)); w[]=;
rep(j,,i-) w[j]=(1ll*w[j-]*wn)%mo;
for (int j=;j<n;j+=(i*))
for (int k=;k<i;k++)
{
int x=a[j+k],y=1ll*a[i+j+k]*w[k]%mo;
a[j+k]=(x+y)%mo; a[i+j+k]=(x-y)%mo;
}
}
if (o==-)
{
reverse(&a[],&a[n]);
for (int i=,inv=fsp(n,mo-);i<n;i++)
a[i]=1ll*a[i]*inv%mo;
}
}
IL void getcj(int *A,int *B,int len)
{
m=len*2; ntt_init();
for (int i=0;i<len;i++) a[i]=A[i],b[i]=B[i];
ntt(a,1); ntt(b,1);
for(int i=0;i<n;i++) a[i]=1ll*a[i]*b[i]%mo;
ntt(a,-1);
for (int i=0;i<len;i++) B[i]=a[i];
clear();
}
 

当模数不为这$3$个,我们就需要$mtt$来实现

而$mtt$的实现为用$mx$的方法将数的实部虚部分别放$x \& 65536,x(>>15)$

另外一个重要的地方是要预处理出$w$,我们采用指针来存,避免使用vector

代码$p$的初始值为$2*n$

所有数组大小为$4*n$

$getcj$的时候要先把数组中的负数变正

IL void clear()
{
for (int i=;i<=n;i++) a[i].a=a[i].b=b[i].a=b[i].b=c[i].a=c[i].b=d[i].a=d[i].b=;
}
cp *w[N],tmp[N*];
int p;
IL void init()
{
cp *now=tmp;
for (int i=;i<=p;i<<=)
{
w[i]=now;
for (int j=;j<i;j++) w[i][j]=(cp){cos(pi*j/i),sin(pi*j/i)};
now+=i;
}
}
IL void fft_init()
{
l=; for (n=;n<=m;n<<=) l++;
for (int i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
}
void fft(cp *a,int o)
{
for (int i=;i<n;i++) if (i>r[i]) swap(a[i],a[r[i]]);
for (int i=;i<n;i<<=)
for (int j=;j<n;j+=(i*))
{
cp *x1=a+j,*x2=a+i+j,*W=w[i];
for (int k=;k<i;k++,x1++,x2++,W++)
{
cp x=*x1,y=(cp){(*W).a,(*W).b*o}*(*x2);
*x1=x+y,*x2=x-y;
}
}
if (o==-) for(int i=;i<n;i++) a[i].a/=n;
}
IL void getcj(int *A,int *B,int len)
{
rep(i,,len)
{
A[i]=(A[i]+mo)%mo,B[i]=(B[i]+mo)%mo;
}
for (int i=;i<len;i++)
{
a[i]=(cp){A[i]&,A[i]>>};
b[i]=(cp){B[i]&,B[i]>>};
}
m=len*; fft_init();
fft(a,); fft(b,);
for (int i=;i<n;i++)
{
int j=(n-)&(n-i);
c[j]=(cp){0.5*(a[i].a+a[j].a),0.5*(a[i].b-a[j].b)}*b[i];
d[j]=(cp){0.5*(a[i].b+a[j].b),0.5*(a[j].a-a[i].a)}*b[i];
}
fft(c,); fft(d,);
double inv=ee/n;
rep(i,,n) c[i].a*=inv,c[i].b*=inv;
rep(i,,n) d[i].a*=inv,d[i].b*=inv;
rep(i,,len)
{
ll a1=c[i].a+0.5,a2=c[i].b+0.5;
ll a3=d[i].a+0.5,a4=d[i].b+0.5;
B[i]=(a1+((a2+a3)%mo<<)+((a4%mo)<<))%mo;
}
clear();
}

对于其他的多项式函数

用$fft$还是$ntt$是差不多的(除了数组类型)

fft,ntt的更多相关文章

  1. FFT \ NTT总结(多项式的构造方法)

    前言.FFT  NTT 算法 网上有很多,这里不再赘述. 模板见我的代码库: FFT:戳我 NTT:戳我 正经向:FFT题目解题思路 \(FFT\)这个玩意不可能直接裸考的..... 其实一般\(FF ...

  2. [学习笔记&教程] 信号, 集合, 多项式, 以及各种卷积性变换 (FFT,NTT,FWT,FMT)

    目录 信号, 集合, 多项式, 以及卷积性变换 卷积 卷积性变换 傅里叶变换与信号 引入: 信号分析 变换的基础: 复数 傅里叶变换 离散傅里叶变换 FFT 与多项式 \(n\) 次单位复根 消去引理 ...

  3. FFT/NTT/MTT学习笔记

    FFT/NTT/MTT Tags:数学 作业部落 评论地址 前言 这是网上的优秀博客 并不建议初学者看我的博客,因为我也不是很了解FFT的具体原理 一.概述 两个多项式相乘,不用\(N^2\),通过\ ...

  4. FFT&NTT总结

    FFT&NTT总结 一些概念 \(DFT:\)离散傅里叶变换\(\rightarrow O(n^2)\)计算多项式卷积 \(FFT:\)快速傅里叶变换\(\rightarrow O(nlogn ...

  5. 快速构造FFT/NTT

    @(学习笔记)[FFT, NTT] 问题概述 给出两个次数为\(n\)的多项式\(A\)和\(B\), 要求在\(O(n \log n)\)内求出它们的卷积, 即对于结果\(C\)的每一项, 都有\[ ...

  6. FFT/NTT模板 既 HDU1402 A * B Problem Plus

    @(学习笔记)[FFT, NTT] Problem Description Calculate A * B. Input Each line will contain two integers A a ...

  7. FFT/NTT基础题总结

    在学各种数各种反演之前把以前做的$FFT$/$NTT$的题整理一遍 还请数论$dalao$口下留情 T1快速傅立叶之二 题目中要求求出 $c_k=\sum\limits_{i=k}^{n-1}a_i* ...

  8. $FFT/NTT/FWT$题单&简要题解

    打算写一个多项式总结. 虽然自己菜得太真实了. 好像四级标题太小了,下次写博客的时候再考虑一下. 模板 \(FFT\)模板 #include <iostream> #include < ...

  9. FFT&NTT数学解释

    FFT和NTT真是噩梦呢 既然被FFT和NTT坑够了,坑一下其他的人也未尝不可呢 前置知识 多项式基础知识 矩阵基础知识(之后会一直用矩阵表达) FFT:复数基础知识 NTT:模运算基础知识 单位根介 ...

  10. HDU-4609(FFT/NTT)

    HDU-4609(FFT/NTT) 题意: 给出n个木棒,现从中不重复地选出3根来,求能拼出三角形的概率. 计算合法概率容易出现重复,所以建议计算不合法方案数 枚举选出的最大边是哪条,然后考虑剩下两条 ...

随机推荐

  1. Python之常见算法介绍

    一.算法介绍 1. 算法是什么 算法是指解题方案的准确而完整的描述,是一系列解决问题的清晰指令,算法代表着用系统的方法描述解决问题的策略机制.也就是说,能够对一定规范的输入,在有限时间内获得所要求的输 ...

  2. oneinstack 安装 https-certbot

    免费https?   官方安装教程:https://certbot.eff.org/#centos6-nginx (以下是说明安装时遇到的): 下载并修改文件权限 wget https://dl.ef ...

  3. 利用fis3构建前端项目工程

    FIS3是国内百度公司产出的一款前端工程构建工具,FIS3可以解决前端工程中性能优化.资源加载(异步.同步.按需.预加载.依赖管理.合并.内嵌).模块化开发.自动化工具.开发规范.代码部署等问题,首先 ...

  4. Linux-服务器创建swap交换分区

    服务器 swap 交换分区制作 作用:‘提升‘ 内存的容量,防止OOM(Out Of Memory) 查看当前的交换分区 # cat /proc/swaps # free -m # swapon -s ...

  5. 记录一次有意思的XSS过滤绕过

    我的朋友赵一天今晚给我发了一个站,跟我说他xss绕不过去,让我试试.我正好无事,就帮她看看咯. 通过赵一天发我的站点,说实话,我自己学到了很多东西,感谢大佬的教诲.今天分享出来: 站点:xxx.com ...

  6. luoguP4705 玩游戏

    好好玩 即对于k∈[1,t] 求(ax+by)^k 以下图片均来自于: 在Ta的博客查看 一 二项式展开: 设: 那么: 可以卷积了 二 求: (PS:随机序列的0~k次方和,这是一个经典问题.) 我 ...

  7. GWAS文献解读:The stability of educational achievement across school years is largely explained by genetic factors

    方法 从NPD(英国数据库,收集有关学生在学年中学业成绩的数据)和TEDS(英国国家课程指南报告成绩数据库,由国家教育研究基金会和资格与课程管理局制定标准化核心学术课程)数据库获得双胞胎的学业成绩数据 ...

  8. 20175221 2018-2019-2 《Java程序设计》第一周学习总结

    20175221 2018-2019-2 <Java程序设计>第一周学习总结 教材学习内容总结 本周通过观看书本配套视频,学到了如解释器,编译器等一些简单概念. 还懂得了java的一些简单 ...

  9. CMDB服务器管理系统【s5day88】:采集资产-文件配置(二)

    上节疑问: 1.老师我们已经写到global_settings里了,为什么还要写到__init__.py setting 这的作用是为了:整合起两个的组合global_settings和setting ...

  10. Sass学习第一天

    Sass学习 网站学习地址: Sass中文网:https://www.sass.hk/docs/#t7-3 Airen的博客:https://www.w3cplus.com/preprocessor/ ...