BZOJ


DAG中,根据\(Dilworth\)定理,有 \(最长反链=最小链覆盖\),也有 \(最长链=最小反链划分数-1\)(这个是指最短的最长链?并不是很确定=-=),即把所有点划分成最少的集合,使得集合内的点两两之间没有边。

直接状压。设\(f[s]\)表示\(s\)集合内的点是否满足两两之间没有边,\(g[s]\)表示最少可以将\(s\)划分为几个集合使得集合内两两没有边。

那么如果\(f[s']=1\ (s'\in s)\),\(g[s]=\min(g[s],\ g[s\ \text{xor}\ s']+1)\)。

复杂度\(O(m2^n+3^n)\)。

这么做不需要考虑给边定向啊= =

另一个这样应用\(Dilworth\)定理的好像是导弹拦截问题?

所以这题猜个结论之后,不和BZOJ4145一样吗=v=


//1112kb	728ms
#include <cstdio>
#include <cstring>
#include <algorithm>
#define lb(x) (x&-x)
const int N=15,M=(1<<N)+1; int g[M],id[233],ref[M];
bool mp[N][N],f[M]; int main()
{
char s1[3],s2[3];
memset(id,0xff,sizeof id);
int n=0,m; scanf("%d",&m);
for(int p1,p2; m--; )
{
scanf("%s%s",s1,s2);
if(id[p1=s1[0]]==-1) id[p1]=n++;
if(id[p2=s2[0]]==-1) id[p2]=n++;
mp[id[p1]][id[p2]]=1, mp[id[p2]][id[p1]]=1;
}
int lim=(1<<n)-1;
for(int i=0; i<n; ++i) ref[1<<i]=i;
for(int s=0; s<=lim; ++s)
{
f[s]=1;
for(int s1=s; s1&&f[s]; s1^=lb(s1))
for(int s2=s,i=ref[lb(s1)]; s2; s2^=lb(s2))
if(mp[i][ref[lb(s2)]]) {f[s]=0; break;}
}
g[0]=0;
for(int s=1; s<=lim; ++s)
{
int tmp=1<<30;
for(int ss=s; ss; ss=(ss-1)&s)
if(f[ss]) tmp=std::min(tmp,g[s^ss]+1);
g[s]=tmp;
}
printf("%d\n",g[lim]-2); return 0;
}

BZOJ.4160.[NEERC2009]Exclusive Access 2(状压DP Dilworth定理)的更多相关文章

  1. [BZOJ 1072] [SCOI2007] 排列perm 【状压DP】

    题目链接:BZOJ 1072 这道题使用 C++ STL 的 next_permutation() 函数直接暴力就可以AC .(使用 Set 判断是否重复) 代码如下: #include <io ...

  2. BZOJ 3195 [Jxoi2012]奇怪的道路 | 状压DP

    传送门 BZOJ 3195 题解 这是一道画风正常的状压DP题. 可以想到,\(dp[i][j][k]\)表示到第\(i\)个点.已经连了\(j\)条边,当前\([i - K, i]\)区间内的点的度 ...

  3. BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]

    1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3336  Solved: 1936[Submit][ ...

  4. BZOJ 3446: [Usaco2014 Feb]Cow Decathlon( 状压dp )

    水状压dp. dp(x, s) = max{ dp( x - 1, s - {h} ) } + 奖励(假如拿到的) (h∈s). 时间复杂度O(n * 2^n) ------------------- ...

  5. BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...

  6. BZOJ 4197 NOI 2015 寿司晚宴 状压DP

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status] ...

  7. BZOJ 1879 [Sdoi2009]Bill的挑战 ——状压DP

    本来打算好好写写SDOI的DP题目,但是忒难了, 太难了,就写的这三道题仿佛是可做的. 生在弱省真是兴奋. 这题目直接状压,f[i][j]表示匹配到i,状态集合为j的方案数,然后递推即可. #incl ...

  8. bzoj 4197: [Noi2015]寿司晚宴【状压dp】

    一个数内可能多个的质因数只有小于根号n的,500内这样的数只有8个,所以考虑状压 把2~n的数处理出小于根号500的质因数集压成s,以及大质数p(没有就是1),然后按p排序 根据题目要求,拥有一个质因 ...

  9. bzoj 1072: [SCOI2007]排列perm【状压dp】

    先写了个next_permutation结果T了,于是开始写状压 设f[s][i]为选取状态为s,选的数模d为i的方案数,去重的话直接除以每个数字的出现次数的阶乘即可 #include<iost ...

随机推荐

  1. kafka 日常使用和数据副本模型的理解

    kafka 日常使用和数据副本模型的理解 在使用Kafka过程中,有时经常需要查看一些消费者的情况.Kafka健康状况.临时查看.同步一些数据,又由于Kafka只是用来做流式存储,又没有像Mysql或 ...

  2. QMQTT简单介绍(2)

    QMQTT mqtt client for Qt Please compile the library with Qt >= 5.3 version. On Windows you need t ...

  3. Centos6.5使用yum安装mysql——快速上手必备(转载)

    第1步.yum安装mysql[root@stonex ~]#  yum -y install mysql-server安装结果:Installed:    mysql-server.x86_64 0: ...

  4. selenium定位方式-Xpath使用方法

    什么是Xpath? XPath是XML的路径语言,通俗一点讲就是通过元素的路径来查找到这个标签元素. 一. 在火狐浏览器上安装Xpath 方法如下: 1.使用 Firefox 访问 https://a ...

  5. 浅入深出Vue:工具准备之PostMan安装配置及Mock服务配置

    浅入深出Vue之工具准备(二):PostMan安装配置 由于家中有事,文章没顾得上.在此说声抱歉,这是工具准备的最后一章. 接下来就是开始环境搭建了~尽情期待 工欲善其事必先利其器,让我们先做好准备工 ...

  6. [经验交流] 试用基于 influxdb+kapacitor 的监控系统

    2017年10月16日: 使用中发现kapacitor的ui过于简单,不能满足实际工作需要,现已切换到grafana --------- 两个月前试用了基于 elasticsearch + xpack ...

  7. Java编程思想(后)

    Java编程思想(后) 持有对象 如果一个程序只包含固定数量的且其生命期都是已知的对象,那么这是一个非常简单的程序. Java中的库基本类型: List, Set, Queue和Map --- 称为集 ...

  8. 如何用java实现一个p2p种子搜索(4)-种子获取

    种子获取 在上一篇中我们已经可以获取到dht网络中的infohash了,所以我们只需要通过infohash来获取到种子,最后获取种子里面的文件名,然后和获取到的infohash建立对应关系,那么我们的 ...

  9. LightOJ 1372 (枚举 + 树状数组)

    题目 Link 输出序列中有多少个组合 {a1,a2,a3,a4,a5,a6}可以构成一个六边形. 分析 序列每个数都不相等. 所以可以设 a1<a2<a3<a4<a5< ...

  10. 龙芯yl8089无声音的解决方案

    网上搜索到的解决方法都是卸载pulseaudio,但这种方法比较暴力不能从根本上解决问题. 经过一段时间的排查,我发现最终问题出现在resample-method上. 由于内核内CS5536 AC97 ...