金融量化分析【day112】:量化平台的使用-下单函数
order - 按股数下单
1、代码
# 导入函数库
import jqdata #初始化函数,设定基准等等
def initialize(context):
set_benchmark('000300.XSHG')
g.security = get_index_stocks('000300.XSHG')
set_option('use_real_price',True)
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003,close_today_commission=0, min_commission=5),type='stock')
log.set_level('order','warning')
order_value("601318.XSHG",10000)
def handle_data(context, data):
print(context.portfolio.positions)
2、输出
available_cash: 可用资金, 可用来购买证券的资金
代码
# 导入函数库
import jqdata #初始化函数,设定基准等等
def initialize(context):
set_benchmark('000300.XSHG')
g.security = get_index_stocks('000300.XSHG')
set_option('use_real_price',True)
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003,close_today_commission=0, min_commission=5),type='stock') def handle_data(context, data):
print(context.portfolio.available_cash)
输出
total_amount: 总仓位, 但不包括挂单冻结仓位
1、代码
# 导入函数库
import jqdata #初始化函数,设定基准等等
def initialize(context):
set_benchmark('000300.XSHG')
g.security = get_index_stocks('000300.XSHG')
set_option('use_real_price',True)
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003,close_today_commission=0, min_commission=5),type='stock')
log.set_level('order','warning')
order_value("601318.XSHG",10000)
def handle_data(context, data):
print(context.portfolio.positions['601318.XSHG'].total_amount)
2、输出
today_amount: 今天开的仓位
1、代码
# 导入函数库
import jqdata #初始化函数,设定基准等等
def initialize(context):
set_benchmark('000300.XSHG')
g.security = get_index_stocks('000300.XSHG')
set_option('use_real_price',True)
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003,close_today_commission=0, min_commission=5),type='stock')
log.set_level('order','warning')
order_value("601318.XSHG",10000)
def handle_data(context, data):
print(context.portfolio.positions['601318.XSHG'].today_amount)
2、输出
closeable_amount: 可卖出的仓位 / 场外基金持有份额
1、代码
# 导入函数库
import jqdata #初始化函数,设定基准等等
def initialize(context):
set_benchmark('000300.XSHG')
g.security = get_index_stocks('000300.XSHG')
set_option('use_real_price',True)
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003,close_today_commission=0, min_commission=5),type='stock')
log.set_level('order','warning')
order_value("601318.XSHG",10000)
def handle_data(context, data):
print(context.portfolio.positions['601318.XSHG'].closeable_amount)
2、输出
打印数据
# 导入函数库
import jqdata #初始化函数,设定基准等等
def initialize(context):
set_benchmark('000300.XSHG')
g.security = get_index_stocks('000300.XSHG')
set_option('use_real_price',True)
set_order_cost(OrderCost(open_tax=0, close_tax=0.001, open_commission=0.0003, close_commission=0.0003,close_today_commission=0, min_commission=5),type='stock')
log.set_level('order','warning') def handle_data(context, data):
df = attribute_history('601318.XSHG', 5)
print(df)
输出
金融量化分析【day112】:量化平台的使用-下单函数的更多相关文章
- 金融量化分析-python量化分析系列之---使用python获取股票历史数据和实时分笔数据
财经数据接口包tushare的使用(一) Tushare是一款开源免费的金融数据接口包,可以用于获取股票的历史数据.年度季度报表数据.实时分笔数据.历史分笔数据,本文对tushare的用法,已经存在的 ...
- 金融量化分析【day112】:初识量化交易
一.摘要 为什么需要量化交易? 量化交易是做什么? 量化交易的价值何在? 做量化交易需要什么? 聚宽是什么? 零基础如何快速入门量化交易? 自测与自学 二.量化交易比传统交易强多少? 它能让你的交易效 ...
- 利用R语言打造量化分析平台
利用R语言打造量化分析平台 具体利用quantmod包实现对股票的量化分析 1.#1.API读取在线行情2.#加载quantmod包3.if(!require(quantmod)){4. instal ...
- day31 堡垒机尾声 + Python与金融量化分析(一)
堡垒机尾声: 代码案例:https://github.com/liyongsan/git_class/tree/master/day31 课堂笔记:file send: 1.选择本地文件 2.远程路径 ...
- Python实战——基于股票的金融数据量化分析
说明:本文只是通过自己的已学知识对股票数据进行了一个简单的量化分析,只考虑了收盘情况,真实的量化交易中仅仅考虑收盘情况是不够的,还有很多的复杂因素,而且仅仅三年数据是不足以来指导真实的股票交易的,因此 ...
- 量化分析获取数据的3种姿势(压箱底的神器Tushare)
自打入门量化分析起,就有相当部分的时间在与数据打交道,从数据的获取.清洗到使用,对分析而言既是繁琐的,也是必须的.有大牛曾经说,量化分析有8成的开发时间都在处理数据. 为了节省时间,将更多精力投入到策 ...
- python量化分析系列之---5行代码实现1秒内获取一次所有股票的实时分笔数据
python量化分析系列之---5行代码实现1秒内获取一次所有股票的实时分笔数据 最近工作太忙了,有一个星期没有更新文章了,本来这一期打算分享一些对龙虎榜数据的分析结果的,现在还没有把数据内的价值很好 ...
- 量化分析v1
量化分析v1 # -*- coding: utf-8 -*- """ Created on Wed Apr 11 10:13:32 2018 @author: chens ...
- 量化分析:把Tushare数据源,规整成PyalgoTrade所需格式
量化分析:把Tushare数据源,规整成PyalgoTrade所需格式 分析A股历史数据,首先需要确定数据来源.如果只想做日k线.周k线的技术分析,可以用PyalgoTrade直接从yahoo.goo ...
随机推荐
- dynalist 配额
2018-8-29 dynalist 配额 提示有一个G的配额 就是使用的流量用光了.仅有1个G
- python文章装饰器理解12步
1. 函数 在python中,函数通过def关键字.函数名和可选的参数列表定义.通过return关键字返回值.我们举例来说明如何定义和调用一个简单的函数: def foo(): return 1 fo ...
- 批处理基础知识-IF
本文主要介绍批处理IF命令的使用. IF命令格式: if /i string=string command 释义:判断2个字符串是否相等,但不区分大小写. 例: 代码: @echo off if /i ...
- MySql 学习之路-高级2
目录: 1.约束 2.ALTER TABLE 3.VIEW 1.约束 说明:SQL约束用于规定表中的数据规则,如果存在违反约束的数据行为,行为会被约束终止,约束可以在建表是规定,也可以在建表后规定,通 ...
- 用微软官方的 HTML Help Workshop制作的CHM文件不显示图片解决办法
制作CHM文档,方便小巧还易于查看,用处自不必多说了,最近想把这个季度所学习的内容全部制作成CHM格式文档,给自己后续用来温故而知新,同时也可以做为后起之秀避坑法宝.但是在生成CHM文档之后发现有些地 ...
- c#语法学习
自动属性.隐试类型.命名参数和自动初始化器. note:这里说的这些,是语法糖.按照一定的格式写,部分代码编译器帮我们实现了, 1.自动属性:自动属性是非常有用的语法糖,帮我我们做了两件事:1.自动帮 ...
- yidiandian
hzwer libreoj (需要拿新版的打开)
- STM32F40G-EVAL_UC/OS III
micrum官网下载uc/os程序包: 包含文件cotex_M4.h:
- Emit动态代理.NetCore迁移之旅
[前言] 前面我们介绍了Aop 从静态代理到动态代理:https://www.cnblogs.com/7tiny/p/9657451.html 我们在.NetFramework平台下使用微软提供的Em ...
- 一篇博客带你入门Flask
一. Python 现阶段三大主流Web框架 Django Tornado Flask 对比 1.Django 主要特点是大而全,集成了很多组件,例如: Models Admin Form 等等, 不 ...