题目连接
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#define ll long long
#define gc() getchar()
#define maxn 2005
using namespace std;
inline ll read()
{
ll a=;int f=;char p=gc();
while(!isdigit(p)){f|=p=='-';p=gc();}
while(isdigit(p)){a=(a<<)+(a<<)+(p^);p=gc();}
return f?-a:a;
}
void write(ll a)
{
if(a>)write(a/);
putchar(a%+'');
} int t,k,c[maxn][maxn],f[maxn][maxn];
int main()
{
t=read();k=read();
for(int i=;i<=;++i)c[i][]=;
for(int i=;i<=;++i)
for(int j=;j<=i;++j)
c[i][j]=(c[i-][j-]+c[i-][j])%k;
for(int i=;i<=;++i)
{
for(int j=;j<=i;++j)
{
f[i][j]=f[i-][j]+f[i][j-]-f[i-][j-];
if(!c[i][j])f[i][j]++;
}
f[i][i+]=f[i][i];
}
for(int i=;i<=t;++i)
{
int n=read(),m=read();
if(m>n)m=n;
write(f[n][m]);
putchar('\n');
}
return ;
}

by子谦。(是HMY,不是钟子谦奆佬QWQ)大佬的面对面讲解

【洛谷P2822 组合数问题】的更多相关文章

  1. 洛谷P2822 组合数问题(题解)

    https://www.luogu.org/problemnew/show/P2822(题目传送) 先了解一下有关组合数的公式:(m在上,n在下) 组合数通项公式:C(n,m)=n!/[m!(n-m) ...

  2. 洛谷P2822 组合数问题

    输入输出样例 输入样例#1: 1 2 3 3 输出样例#1: 1 输入样例#2: 2 5 4 5 6 7 输出样例#2: 0 7 说明 [样例1说明] 在所有可能的情况中,只有C_2^1 = 2C21 ...

  3. 洛谷P2822组合数问题

    传送门啦 15分暴力,但看题解说暴力分有30分. 就是找到公式,然后套公式.. #include <iostream> #include <cstdio> #include & ...

  4. 洛谷 P2822 组合数问题

    题目描述 组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三个物品中选择两个物品可以有(1,2),(1,3),(2,3)这三种选择方法.根据组合数的 ...

  5. 洛谷——P2822 组合数问题

    https://www.luogu.org/problem/show?pid=2822 题目描述 组合数C_n^mC​n​m​​表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三 ...

  6. 洛谷P2822 组合数问题 杨辉三角

    没想到这道题竟然这么水- 我们发现m,n都非常小,完全可以O(nm)O(nm)O(nm)预处理出stripe数组,即代表(i,j)(i,j)(i,j) 及其向上的一列的个数,然后进行递推即可. #in ...

  7. 洛谷 P2822 组合数问题 题解

    今天又考试了...... 这是T2. Analysis 考试时想了一个判断质因数个数+打表的神奇方法,但没在每次输入n,m时把ans置0,50分滚粗. 看了题解才发现原来是杨辉三角+二维前缀和,果然还 ...

  8. 【题解】洛谷P2822 [NOIP2016TG ]组合数问题 (二维前缀和+组合数)

    洛谷P2822:https://www.luogu.org/problemnew/show/P2822 思路 由于n和m都多达2000 所以暴力肯定是会WA的 因为整个组合数是不会变的 所以我们想到存 ...

  9. 【洛谷p2822】组合数问题

    (突然想          ??忘掉了wdt) (行吧那就%%%hmr) 组合数问题[传送门] (因为清明要出去培训数学知识所以一直在做数论) 组合数<=>杨辉三角形(从wz那拐来的技能 ...

随机推荐

  1. ES6常用

    ECMAScript 6(以下简称ES6)是JavaScript语言的下一代标准. 因为当前版本的ES6是在2015年发布的,所以又称ECMAScript 2015(简称ES2015).虽然浏览器在不 ...

  2. window64位电脑如何通过VMware Workstation12.5.6安装苹果操作系统 macOS High Sierra 10.13

    1.下载 VMware-workstation-full-12.5.6.exe,macOS High Sierra 10.13.iso 2.安装 VMware-workstation时不要选择C盘,因 ...

  3. ZYNQ EMIO使用及可重用封装

    为了快速实现算法板级验证,PC端需要通过JTAG或以太网与FPGA形成通路.最简单便捷的方案是利用协议栈芯片,用户可以无视底层,利用简单的SPI协议读写寄存器实现复杂的TCP UDP等网络协议.当然带 ...

  4. sqlserver中批量导出所有作业或链接脚本

    问题描述: 经常在数据库迁移到另外一台服务器的时候,需要把作业也迁移过去,但是作业有时候好多个,要是一个个编写监本出来很麻烦 今天知道个简单方法批量可以导出sql脚本,顺便做个笔记 解决方法: 1.在 ...

  5. php分页实现

    <?php header("content-type:text/html;charset=utf8"); include 'conn.php'; //每页显示的数据条数 $p ...

  6. June. 24th 2018, Week 26th. Sunday

    Beautiful things don't ask for attention. 真正美丽的东西,并不会刻意寻求别人的注目. From The Secret Life of Walter Mitty ...

  7. Linux文件目录

    简介: Linux 内核最初由芬兰的 Linus Torvalds 开发,后来他组建了团队,Linux 内核由这个团队维护. GNU 组织开发了很多核心软件和基础库,例如 GCC 编译器.C语言标准库 ...

  8. Linux Mysql 每天定时备份

    1.创建脚本 dbback.sh,内容如下: #!/bin/bash mysqldump -uroot -p123456 hexin>/work/db_back/hexin_$(date +%Y ...

  9. DISK 100% BUSY,谁造成的?(ok)

    iostat等命令看到的是系统级的统计,比如下例中我们看到/dev/sdb很忙,如果要追查是哪个进程导致的I/O繁忙,应该怎么办? # iostat -xd ... Device: rrqm/s wr ...

  10. Koa 框架介绍

    Node.js 是一个异步的世界,官方 API 支持的都是 callback 形式的异步编程模型,这 会带来许多问题,例如:callback 嵌套问题 ,异步函数中可能同步调用 callback 返回 ...