project euler做题记录
ProjectEuler_做题记录
简单记录一下。
problem 441 The inverse summation of coprime couples
神仙题。考虑答案为:
\[\begin{array}{c}
S(n) & = & \sum_{i = 1} ^ n \sum_{p = 1} ^ i \sum_{q = p + 1} ^ i \frac {1}{pq}[p + q \geq i][gcd(p, q) = 1] \\
& = & \sum_{i = 1} ^ n \sum_{p = 1} ^ i \sum_{q = p + 1} ^ i \frac {1}{pq}[p + q \geq i] \sum_{d|gcd(p, q)} \mu(d) \\
& = & \sum_{i = 1} ^ n \sum_{d = 1} ^ n \mu(d) \sum_{p = 1} ^ {\lfloor i/d \rfloor} \sum_{q = 1} ^ {\lfloor i/d \rfloor} \frac {1}{pqd ^ 2}[pd + qd \geq i]\\
& = & \sum_{i = 1} ^ n \sum_{d = 1} ^ n \frac {\mu(d)}{d ^ 2} \sum_{p = 1} ^ {\lfloor i/d \rfloor} \sum_{q = 1} ^ {\lfloor i/d \rfloor} \frac {1}{pq}[p + q \geq \lfloor i/d \rfloor] \\ & - & \frac {1}{pq}[p + q = \lfloor i/d \rfloor][i \ mod \ d = 0] \\
\end{array}\]
我们考虑构造三个函数:
\[\begin{array}{c}
F(n) & = & \sum_{i = 1} ^ n \frac {1}{i} \\
G(n) & = & \sum_{i = 1} ^ n \sum_{j = i + 1} ^ n \frac {1}{ij} [i + j = n] \\
T(n) & = & \sum_{i = 1} ^ n \sum_{j = i + 1} ^ n \frac {1}{ij} [i + j \geq n] \\
\end{array}\]
事实上,我们可以解出这三个函数的递归式,然后做到\(O(N)\)预处理。
然后最后的式子会变成:
\[S(n) = \sum_{d = 1} ^ n \frac {\mu(d)}{d ^ 2} \sum_{i = d} ^ n(T(\lfloor i/d \rfloor) - G(\lfloor i/d \rfloor)[i \ mod \ d \neq 0])
\]
然后就可以根据调和级数做到\(O(n \ lnn)\)。
problem 530 GCD of Divisors
由于直接化简比较困难,考虑将整个答案一起化简:
\[\begin{array}{c}
ans & = & \sum_{i = 1} ^ n \sum_{d \mid i} gcd(d, \frac {i}{d}) \\
& = & \sum_{g = 1} ^ n g \sum_{i = 1} ^ {n} \sum_{d \mid i} [gcd(d, \frac {i}{d}) = g](先枚举gcd的套路)\\
& = & \sum_{g = 1} ^ n g \sum_{i = 1} ^ {\lfloor n/g^2 \rfloor} \sum_{d \mid i} [gcd(d, \frac {i}{d}) = 1](设i = \frac {i}{g ^ 2}, d = \frac {d}{g})\\
& = & \sum_{g = 1} ^ n g \sum_{i = 1} ^ {\lfloor n/g^2 \rfloor} \sum_{d \mid i} \sum_{t \mid gcd(d, \frac {i}{d})} \mu(t) \\
& = & \sum_{g = 1} ^ n g \sum_{t = 1} ^ n \mu(t) \sum_{i = 1} ^ {\lfloor n/(gt) ^ 2 \rfloor} \sum_{d \mid i} 1 (设i = \frac {i}{t ^ 2}, d = \frac {d}{t},也是套路)\\
& = & \sum_{g = 1} ^ n g \sum_{t = 1} ^ n \mu(t) \sum_{i = 1} ^ {\lfloor n/(gt) ^ 2 \rfloor} \sigma_0(i)(\sigma_0(i)表示i的因子个数)\\
&!&(下一步是个新套路,构造\phi的卷积形式\phi = \mu * 1) \\
& = & \sum_{k = 1} ^ {\sqrt n} \sum_{g \mid k} g\mu(\frac {k}{g}) \sum_{i = 1} ^ {\lfloor n/k ^ 2 \rfloor} \sigma_0(i)(k = gt,注意k的取值只需要到\sqrt n)\\
& = & \sum_{k = 1} ^ {\sqrt n} \phi(k) \sum_{i = 1} ^ {\lfloor n/k ^ 2 \rfloor} \sigma_0(i)\\
&!& (最后套用\sum_{i = 1} ^ {m} \sigma_0(i) = \sum_{i = 1} ^ m \lfloor \frac {m}{i} \rfloor)\\
& = & \sum_{k = 1} ^ {\sqrt n} \phi(k) \sum_{i = 1} ^ {\lfloor n/k ^ 2 \rfloor} \lfloor \frac {\lfloor n/k ^ 2 \rfloor}{i} \rfloor \\
\end{array}\]
对后面部分使用除法分块,复杂度就是\(\sum_{i = 1} ^ {\sqrt n} O(\sqrt \frac {n}{i ^ 2}) = \sum_{i = 1} ^ {\sqrt n} O(\frac {\sqrt n}{i}) = O(\sqrt n \ ln \sqrt n)\)
project euler做题记录的更多相关文章
- UOJ 做题记录
UOJ 做题记录 其实我这么弱> >根本不会做题呢> > #21. [UR #1]缩进优化 其实想想还是一道非常丝播的题目呢> > 直接对于每个缩进长度统计一遍就好 ...
- Sam做题记录
Sam做题记录 Hihocoder 后缀自动机二·重复旋律5 求一个串中本质不同的子串数 显然,答案是 \(\sum len[i]-len[fa[i]]\) Hihocoder 后缀自动机三·重复旋律 ...
- 退役IV次后做题记录
退役IV次后做题记录 我啥都不会了.... AGC023 D 如果所有的楼房都在\(S\)同一边可以直接得出答案. 否则考虑最左最右两边的票数,如果左边>=右边,那么最右边会投给左边,因为就算车 ...
- 退役III次后做题记录(扯淡)
退役III次后做题记录(扯淡) CF607E Cross Sum 计算几何屎题 直接二分一下,算出每条线的位置然后算 注意相对位置这个不能先搞出坐标,直接算角度就行了,不然会卡精度/px flag:计 ...
- 退役II次后做题记录
退役II次后做题记录 感觉没啥好更的,咕. atcoder1219 历史研究 回滚莫队. [六省联考2017]组合数问题 我是傻逼 按照组合意义等价于\(nk\)个物品,选的物品\(\mod k\) ...
- BJOI做题记录
BJOI做题记录 终于想起还要做一下历年省选题了2333 然而咕了的还是比做了的多2333 LOJ #2178. 「BJOI2017」机动训练 咕了. LOJ #2179. 「BJOI2017」树的难 ...
- FJOI2017前做题记录
FJOI2017前做题记录 2017-04-15 [ZJOI2017] 树状数组 问题转化后,变成区间随机将一个数异或一,询问两个位置的值相等的概率.(注意特判询问有一个区间的左端点为1的情况,因为题 ...
- [日记&做题记录]-Noip2016提高组复赛 倒数十天
写这篇博客的时候有点激动 为了让自己不颓 还是写写日记 存存模板 Nov.8 2016 今天早上买了两个蛋挞 吃了一个 然后就做数论(前天晚上还是想放弃数论 但是昨天被数论虐了 woc noip模拟赛 ...
- Project Euler 第一题效率分析
Project Euler: 欧拉计划是一系列挑战数学或者计算机编程问题,解决这些问题需要的不仅仅是数学功底. 启动这一项目的目的在于,为乐于探索的人提供一个钻研其他领域并且学习新知识的平台,将这一平 ...
随机推荐
- ARM Mcp2515添加驱动
Mcp2515添加驱动 2012-01-10 21:39:32 上图1: 上图2: 上图3: 之前完成了spi接口驱动,所以mcp2515也是通过spi来读写数据的.就是多加一个中断脚. 另外在2 ...
- Liunx中fstab文件详解
Liunx中fstab文件详解 /etc/fstab是用来存放文件系统的静态信息的文件.位于/etc/目录下,可以用命令less /etc/fstab 来查看,如果要修改的话,则用命令 vi /etc ...
- 使用session和cookie实现用户登录:一个登录页面,一个servlet,一个登录成功页面
文件目录 1.登录页面 <%@ page language="java" contentType="text/html; charset=utf-8" p ...
- for 循环,如果判断那里用到了一个函数,每次循环一次都会调用一次函数,如图
但用高级for,可以不用每次都调用方法
- Gym - 100637J
On the most perfect of all planets i1c5l various numeral systems are being used during programming c ...
- docker环境下的测试
docker作为容器常见用于快速部署,最近有个项目是基于docker的,总结一下docker的测试. 1.在主机中安装Docker: ubuntu安装:curl -s https://get.dock ...
- Linux 链路聚合
Linux 链路聚合 链路聚合与双网卡绑定几乎相同,可以实现多网卡绑定主从荣誉,负载均衡,提高网络访问流量.但链路聚合与双网卡绑定技术(bond)不同点就在于,双网卡绑定只能使用两个网卡绑定,而链路聚 ...
- 什么是事务?事务特性?事务隔离级别?spring事务传播特性?
一.事务的概述 什么是事务? 在数据库中,所谓事务是指一组逻辑操作单元即一组sql语句,当这个单元中的一部分操作失败,整个事务回滚,只有全部正确才完成提交.判断事务是否配置成功的关键点在于出现异常时事 ...
- appium-android 遇到swipe函数无法使用的问题及解决办法
问题:cannot resolve method swipe() 问题出现原因:File->Project Structure->Modules->Dependencies-> ...
- LOJ 2409「THUPC 2017」小 L 的计算题 / Sum
思路 和玩游戏一题类似 定义\(A_k(x)=\sum_{i=0}^\infty a_k^ix^i=\frac{1}{1-a_kx}\) 用\(\ln 'x\)代替\(\frac{1}{x}\), 所 ...