BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演
Description

Input
输入文件包含多组测试数据。
Output
T行,每行一个整数,表示你所求的答案。
Sample Input
7 4
5 6
Sample Output
121
HINT
1<=N, M<=50000
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
#define N 50050
using namespace std;
ll f[N];
int prime[8080],cnt,miu[N],s[N];
bool vis[N];
void init() {
int i,j;
miu[1]=s[1]=1;
for(i=2;i<=50000;i++) {
if(!vis[i]) {
prime[++cnt]=i;
miu[i]=-1;
}
for(j=1;j<=cnt&&i*prime[j]<=50000;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) {
miu[i*prime[j]]=0;
break;
}
miu[i*prime[j]]=-miu[i];
}
s[i]=s[i-1]+miu[i];
}
int lst;
for(i=1;i<=50000;i++) {
for(j=1;j<=i;j=lst+1) {
lst=i/(i/j); f[i]+=1ll*(lst-j+1)*(i/j);
}
}
}
ll calc(ll n,ll m) {
ll i,lst,r=min(n,m),ans=0;
for(i=1;i<=r;i=lst+1) {
lst=min(n/(n/i),m/(m/i));
ans+=(s[lst]-s[i-1])*f[n/i]*f[m/i];
}
return ans;
}
int main() {
init();
int T;
ll n,m;
scanf("%d",&T);
while(T--) {
scanf("%lld%lld",&n,&m);
printf("%lld\n",calc(n,m));
}
}
BZOJ_3994_[SDOI2015]约数个数和_莫比乌斯反演的更多相关文章
- P3327/bzoj3994 [SDOI2015]约数个数和(莫比乌斯反演)
P3327 [SDOI2015]约数个数和 神犇题解(转) 无话可补 #include<iostream> #include<cstdio> #include<cstri ...
- 【BZOJ 3994】3994: [SDOI2015]约数个数和(莫比乌斯反演)
3994: [SDOI2015]约数个数和 Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接 ...
- 【BZOJ3994】[SDOI2015] 约数个数和(莫比乌斯反演)
点此看题面 大致题意: 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^N\sum_{j=1}^Md(i·j)\). 莫比乌斯反演 这是一道莫比乌斯反演题. 一个重要的性质 首先 ...
- 洛谷P3327 [SDOI2015]约数个数和 【莫比乌斯反演】
题目 设d(x)为x的约数个数,给定N.M,求\(\sum_{i = 1}^{N} \sum_{j = 1}^{M} d(ij)\) 输入格式 输入文件包含多组测试数据.第一行,一个整数T,表示测试数 ...
- 洛谷P3327 [SDOI2015]约数个数和(莫比乌斯反演)
传送门 公式太长了……我就直接抄一下这位大佬好了……实在懒得打了 首先据说$d(ij)$有个性质$$d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]$$ 我们所求的答案为$ ...
- 【BZOJ3994】约数个数和(莫比乌斯反演)
[BZOJ3994]约数个数和(莫比乌斯反演) 题面 求\[\sum_{i=1}^n\sum_{j=1}^md(ij)\] 多组数据\((<=50000组)\) \(n,m<=50000\ ...
- BZOJ3994:约数个数和(莫比乌斯反演:求[1,N]*[1,M]的矩阵的因子个数)
Description 设d(x)为x的约数个数,给定N.M,求 Input 输入文件包含多组测试数据. 第一行,一个整数T,表示测试数据的组数. 接下来的T行,每行两个整数N.M. Outpu ...
- 「BZOJ 3994」「SDOI 2015」约数个数和「莫比乌斯反演」
题意 设\(d(x)\)为\(x\)的约数个数,求\(\sum_{i=1}^{n}\sum_{j=1}^{m}d(ij)\). 题解 首先证个公式: \[d(ij) = \sum_{x|i}\sum_ ...
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
随机推荐
- JQuery(一)---- JQ的选择器,属性,节点,样式,函数等操作详解
JQuery的基本概念 JQuery是一个javascript库,JQuery凭借着简洁的语法和跨平台的兼容性,极大的简化了js操作DOM.处理事件.执行动画等操作.JQuery强调的理念是:'wri ...
- same tree(判断两颗二叉树是否相等)
Input: 1 1 / \ / \ 2 3 2 3 [1,2,3], [1,2,3] Output: true Example 2: Input: 1 1 / \ 2 2 [1,2], [1,nul ...
- DB2 SQL Error: SQLCODE=-803, SQLSTATE=23505, SQLERRMC=2 (转载)
http://blog.csdn.net/xiyuan1999/article/details/5706230 DB2 SQL Error: SQLCODE=-803, SQLSTATE=23505, ...
- 实施一个SAP项目大概分为下面几个过程
实施一个SAP项目大概分为下面几个过程 1.需求调研.了解客户需要实施的范围,比如是财务模块,后勤模块,人力资源,商务智能等等.需求调研通常有几种方法了解,和客户开会讨论:分配到具体业务人员了解:通过 ...
- java 多线程例子
java 多线程例子 编写具有多线程能力的程序经常会用到的方法有: run(), start(), wait(), notify(), notifyAll(), sleep(), yield(), ...
- AI 学习之路
前言:本文章纯属自己学习路线纪录,不喜勿喷. 最近AI很火,几乎是个程序员 都要去学习AI,作为一个菜鸡小前端,我也踏上了学习AI的方向. 在学习之中,最开始遇到了很多的困难,比如你不知道如何切入进来 ...
- PyCharm中HTML页面CSS class名称自动完成功能失效的问题
如果这个HTML页面带有style元素的CSS定义,那class name自动完成功能就失效了 Pycharm Version:5.03
- C 上传文件到服务器(含接收端源码)
本文demo下载地址:http://www.wisdomdd.cn/Wisdom/resource/articleDetail.htm?resourceId=1067 实例向大家展示了如何用Visua ...
- linux下安装xhprof
https://jingyan.baidu.com/article/a24b33cd7ee1d519ff002b6d.html
- fastjson 的使用总结
前言 最近在开发过程中使用了大量的json作为前后端数据交换的方式,由于之前没有对json做过系统的学习,所有在使用过程中查阅了大量的文档与资料,这里主要记录了我在开发后对json以及fastjson ...